Loading AI tools
来自维基百科,自由的百科全书
在物理科学中,如果描述某个系统的方程其输入(自变数)与输出(应变数)不成正比,则称为非线性系统。由于自然界中大部分的系统本质上都是非线性的,因此许多工程师、物理学家、数学家和其他科学家对于非线性问题的研究都极感兴趣。非线性系统和线性系统最大的差别在于,非线性系统可能会导致混沌、不可预测,或是不直观的结果。
一般来说,非线性系统的行为可以用一组非线性联立方程来描述。非线性方程里含有由未知数构成的非线性函数;换句话说,一个非线性方程并不能写成其未知数的线性组合。非线性微分方程,则是指方程里含有未知函数及其导函数的乘幂不等于一的项。在判定一个方程是线性或非线性时,只需考虑未知数(或未知函数)的部分,不需要检查方程中是否有已知的非线性项。例如在微分方程中,若所有的未知函数、未知导函数皆为一次,即使出现由某个已知变数所构成的非线性函数,仍称它是线性微分方程。
由于非线性方程非常难解,因此常常需要以线性方程来近似一个非线性系统(线性近似)。这种近似对某范围内的输入值(自变数)是很准确的,但线性近似之后反而会无法解释许多有趣的现象,例如孤波、混沌[1]和奇点。这些奇特的现象,也常常让非线性系统的行为看起来违反直觉、不可预测,或甚至混沌。虽然“混沌的行为”和“随机的行为”感觉很相似,但两者绝对不能混为一谈;也就是说,一个混沌系统的行为绝对不是随机的。
举例来说,许多天气系统就是混沌的,微小的扰动即可导致整个系统产生各种不同的复杂结果。就目前的科技而言,这种天气的非线性特性即成了长期天气预报的绊脚石。
某些书的作者以非线性科学来代指非线性系统的研究,但也有人不以为然:
“在科学领域里使用‘非线性科学’这个词,就如同把动物学里大部分的研究对象称作‘非大象动物’一样可笑。”
在 α 是有理数的情况下,一个可叠加函数必定是齐次函数(在讨论线性与否时,齐次函数专指一次齐次函数);若 是连续函数,则只要 α 是任意实数,就可以从叠加性推出齐次。然而在推广至任意复数 α 时,叠加性便再也无法导出齐次了。也就是说,在复数的世界里存在一种反线性映射,它满足叠加性,但却非齐次。叠加性和齐次这两个条件常会被合并在一起,称之为叠加原理:
对于一个表示为
的方程,如果 是一个线性映射,则称为线性方程,反之则称为非线性方程。另外,如果 ,则称此方程齐次(齐次在函数和方程上的定义不同,齐次方程指方程内没有和 x 无关的项 C,即任何项皆和 x 有关)。
这里 的定义是很一般性的, 可为任何数字、向量、函数等,而 可以指任意映射,例如有条件限制(给定初始值或边界值)的微分或积分运算。如果 内含有对 的微分运算,此方程即是一个微分方程。
代数方程又称为多项式方程。令某多项式等于零可得一个多项式方程,例如:
利用勘根法可以找出某个代数方程的解;但若是代数方程组则较为复杂,有时候甚至很难确定一个代数方程组是否具有复数解(见希尔伯特零点定理)。即使如此,对于一些具有有限个复数解的多项式方程组而言,我们已经找到解的方法,并且也已充分了解这种系统的行为[3]。代数方程组的研究是代数几何里重要的一环,而代数几何正是现代数学里的其中一个分枝。
若将一个序列前项和后项之间的关系定义成某个非线性映射,则称为非线性递回关系,例如单峰映射和侯世达数列。由非线性递回关系构成的非线性离散模型,在实际应用中包括 NARMAX(Nonlinear AutoRegressive Moving Average with eXogenous inputs,外部输入非线性自回归移动平均)模型、非线性系统辨识和分析程序等。[4]这些方法可以用来分析时域、频域和时空域(spatio-temporal domains)里复杂的非线性行为。
若描述一个系统的微分方程是非线性的,则称此系统为非线性系统。含有非线性微分方程的问题,系统彼此间的表现差异极大,而每个问题的解法或是分析方法也都不一样。非线性微分方程的例子如流体力学的纳维-斯托克斯方程,以及生物学的洛特卡-沃尔泰拉方程。
解非线性问题最大的难处在于找出未知的解:一般来说,我们无法用已知的解来拼凑出其他满足微分方程的未知解;而在线性的系统里,却可以利用一组线性独立的解,透过叠加原理组合出此系统的通解。例如满足狄利克雷边界条件的一维热传导问题,其解(时间的函数)可以写成许多不同频率之正弦函数的线性组合,而这也让它的解很弹性、具有很大的变化空间。通常我们可以找到非线性微分方程的特解,但由于此时叠加原理并不适用,故无法利用这些特解来建构出其他新的解。
例如
这个方程式的通解为 ,特解为 u = 0(即通解在 C 趋近于无限大时的极限)。此方程是非线性的,因为它可以被改写为
而等号左边并不是 u 的线性映射。若把此式的 u2 换成 u,则会变成线性方程(指数衰减)。
二阶和高阶非线性常微分方程组的解几乎无法表示成解析解,反而较常表为隐函数或非初等函数积分的形式。
分析常微分方程常用的方法包括:
研究非线性偏微分方程最常见也最基础的方法就是变数变换,变换以后的方程会较简单,甚至有可能会变成线性方程。有时候,变数变换后的方程可能会变成一个或两个以上的常微分方程(如同用分离变数法解偏微分方程),不管这些常微分方程可不可解,都能帮助我们了解这个系统的行为。
另一个流体力学和热力学里常用的方法(但数学性较低),是利用尺度分析来简化一个较一般性的方程,使它仅适用在某个特定的边界条件上。例如,在描述一个圆管内一维层流的暂态时,我们可以把非线性的纳维-斯托克斯方程简化成一个线性偏微分方程;这时候尺度分析提供了两个特定的边界条件:一维和层流。
其他分析非线性偏微分方程的方法还有特征线法,以及上述分析常微分方程时常用的方法。
非线性问题的一个典型的例子,就是重力作用之下单摆的运动。单摆的运动可由以下的方程来描述(用拉格朗日力学可以证明[5]):
这是一个非线性且无因次的方程, 是单摆和它静止位置所夹的角度,如动画所示。此方程的一个解法是将 视为积分因子,积分以后得
上述的解是隐解的形式,同时也包含了椭圆积分。这个解通常没有什么用,因为非初等函数积分(即使 仍然是非初等函数)把解的各种特性隐藏了起来,使我们不易看出单摆系统的行为。
另一个解法是把这个非线性方程作线性近似:利用泰勒展开式将非线性的 sine 函数线性化,并在某些特定的点附近讨论解的情形。例如,若在 的点附近作线性近似(又称小角度近似), 时,,故原方程可以改写为
近似后的方程变成了简谐振荡,因此当单摆运动到底部附近时,可以对应到一个简谐振子。而若在 (即当单摆运动到圆弧的最高点时)附近作线性近似,,故原方程可以改写为
这个方程的解含有双曲正弦函数,因此和小角度近似不同,这个近似是不稳定的,也就是说 会无限制地增加(但此近似方程的解也可能是有界的)。当我们把解对应回单摆系统后,就可以了解为什么单摆在圆弧的最高点时不能达到稳定平衡,也就是说,单摆在最高点时是不稳定的状态。
另一个有趣的线性近似是在 附近,此时 ,故原方程可以改写为
这个近似后的方程可以对应到自由落体。
若把以上线性近似的结果合在一起看,就能大致了解单摆的运动情形。利用其他解非线性微分方程的方法,可以进一步帮助我们找到更精确的相图,或是估算单摆的周期。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.