陈-西蒙斯理论 (英语:Chern–Simons theory )以陈省身 和詹姆斯·哈里斯·西蒙斯 的名字命名,描述三维拓扑量子场论 ,在物理学有很多应用。此理论用陈-西蒙斯形式 。
陈省身
陈-西蒙斯理论描述分数量子霍尔效应 ,导致2016年的物理诺贝尔奖 。
若(G,M)是主丛 ,M是流形,G是李群 / 规范群,A是联络 ,陈西蒙斯作用量 是
S
=
k
4
π
∫
M
tr
(
A
∧
d
A
+
2
3
A
∧
A
∧
A
)
.
{\displaystyle S={\frac {k}{4\pi }}\int _{M}{\text{tr}}\,(A\wedge dA+{\tfrac {2}{3}}A\wedge A\wedge A).}
F是曲率:
F
=
d
A
+
A
∧
A
{\displaystyle F=dA+A\wedge A\,}
陈西蒙斯公式 用最小作用量原理 :
0
=
δ
S
δ
A
=
k
2
π
F
.
{\displaystyle 0={\frac {\delta S}{\delta A}}={\frac {k}{2\pi }}F.}
三维的陈-西蒙斯理论 生成很多重要的纽结多项式和纽结不变量:[ 1]
More information 陈西规范群G, 纽结多项式或不变量 ...
Close
拓扑量子计算机 是一种量子计算机 。陈西蒙斯理论陈述有些拓扑量子计算机 的模型,例如“杨李模型”(Fibonacci model),这是最简单的非阿贝尔 任意子 拓扑量子计算机 之一。[ 2] [ 3]
Freedman, Michael H.; Kitaev, Alexei; Larsen, Michael J.; Wang, Zhenghan. Topological Quantum Computation . arXiv:quant-ph/0101025. 2002-09-20 [2020-06-04 ] . (原始内容存档 于2020-07-24).
Chern, S.-S. & Simons, J. Characteristic forms and geometric invariants . Annals of Mathematics . 1974, 99 (1): 48–69. doi:10.2307/1971013 .
Deser, Stanley; Jackiw, Roman; Templeton, S. Three-Dimensional Massive Gauge Theories (PDF) . Physical Review Letters . 1982, 48 : 975–978 [2019-12-28 ] . Bibcode:1982PhRvL..48..975D . doi:10.1103/PhysRevLett.48.975 . (原始内容存档 (PDF) 于2018-07-24).
Intriligator, Kenneth; Seiberg, Nathan. Aspects of 3d N = 2 Chern–Simons-Matter Theories. Journal of High Energy Physics . 2013. Bibcode:2013JHEP...07..079I . arXiv:1305.1633 . doi:10.1007/JHEP07(2013)079 .
Jackiw, Roman; Pi, S.-Y. Chern–Simons modification of general relativity. Physical Review D . 2003, 68 : 104012. Bibcode:2003PhRvD..68j4012J . arXiv:gr-qc/0308071 . doi:10.1103/PhysRevD.68.104012 .
Kulshreshtha, Usha; Kulshreshtha, D.S.; Mueller-Kirsten, H. J. W.; Vary, J. P. Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory under appropriate gauge fixing. Physica Scripta . 2009, 79 : 045001. Bibcode:2009PhyS...79d5001K . doi:10.1088/0031-8949/79/04/045001 .
Kulshreshtha, Usha; Kulshreshtha, D.S.; Vary, J. P. Light-front Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory under appropriate gauge fixing. Physica Scripta . 2010, 82 : 055101. Bibcode:2010PhyS...82e5101K . doi:10.1088/0031-8949/82/05/055101 .
Lopez, Ana; Fradkin, Eduardo . Fractional quantum Hall effect and Chern-Simons gauge theories. Physical Review B . 1991, 44 : 5246. Bibcode:1991PhRvB..44.5246L . doi:10.1103/PhysRevB.44.5246 .
Marino, Marcos . Chern–Simons Theory and Topological Strings. Reviews of Modern Physics . 2005, 77 (2): 675–720. Bibcode:2005RvMP...77..675M . arXiv:hep-th/0406005 . doi:10.1103/RevModPhys.77.675 .
Marino, Marcos. Chern–Simons Theory, Matrix Models, And Topological Strings. International Series of Monographs on Physics. Oxford University Press . 2005.
Witten, Edward . Topological Quantum Field Theory . Communications in Mathematical Physics . 1988, 117 : 353 [2020-09-21 ] . Bibcode:1988CMaPh.117..353W . doi:10.1007/BF01223371 . (原始内容存档 于2017-08-25).
Witten, Edward . Quantum Field Theory and the Jones Polynomial. Communications in Mathematical Physics . 1989, 121 (3): 351–399. Bibcode:1989CMaPh.121..351W . MR 0990772 . doi:10.1007/BF01217730 .
Witten, Edward. Chern–Simons Theory as a String Theory. Progress in Mathematics . 1995, 133 : 637–678. Bibcode:1992hep.th....7094W . arXiv:hep-th/9207094 .