双曲函数也可以以泰勒级数展开:
- (罗朗级数)
- (罗朗级数)
其中
- 是第项伯努利数
- 是第项欧拉数
从双曲正弦和馀弦的定义,可以得出如下恒等式:
和
反双曲函数是双曲函数的反函数。它们的定义为:
Ratcliffe, John, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics 149, Springer: 99, 2006 [2014-03-27], ISBN 9780387331973, (原始内容存档于2014-01-12), That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert's monograph Theorie der Parallellinien, which was published posthumously in 1786.