Starr, Ross M. Approximation of points of convex hull of a sum of sets by points of the sum: An elementary approach [以集合之和的点迫近和集凸包的点:初等进路]. Journal of Economic Theory. 1981, 25 (2): 314–317. MR 0640201. doi:10.1016/0022-0531(81)90010-7(英语).
Farrell, M. J. On Convexity, efficiency, and markets: A Reply [论凸性、效率、市场:回复]. Journal of Political Economy. October 1961a, 69 (5): 484–489. JSTOR 1828538. doi:10.1086/258541(英语).
Farrell, M. J. The Convexity assumption in the theory of competitive markets: Rejoinder [竞争市场论的凸性假设:再回应]. Journal of Political Economy. October 1961b, 69 (5): 493. JSTOR 1828541. doi:10.1086/258544(英语).
Bator, Francis M. On convexity, efficiency, and markets [论凸性、效率、市场]. The Journal of Political Economy. October 1961a, 69 (5): 480–483. JSTOR 1828537. doi:10.1086/258540(英语).
Bator, Francis M. On convexity, efficiency, and markets: Rejoinder [论凸性、效率、市场:再回应]. Journal of Political Economy. October 1961b, 69 (5): 489. JSTOR 1828539. doi:10.1086/258542(英语).
Starr & Stinchcombe (1999,第217–218页): Starr, R. M.; Stinchcombe, M. B. Exchange in a network of trading posts. Chichilnisky, Graciela (编). Markets, information and uncertainty: Essays in economic theory in honor of Kenneth J. Arrow [市场、资讯、不确定性:致敬肯尼斯·阿罗的经济理论论文]. Cambridge, UK: Cambridge University Press. 1999: 217–234. ISBN 978-0-521-08288-4. doi:10.2277/0521553555(英语).
Mas-Colell (1985,第52–55, 145–146, 152–153, and 274–275页): Mas-Colell, Andreu. 1.L Averages of sets [第1.L节:集合的平均]. The Theory of general economic equilibrium: A differentiable approach [一般经济均衡理论:可微分的进路]. Econometric Society monographs 9. Cambridge University Press. 1985. ISBN 0-521-26514-2. MR 1113262(英语).
Hildenbrand (1974,第37, 115–116, 122, and 168页): Hildenbrand, Werner. Core and equilibria of a large economy [大经济体的核和均衡]. Princeton studies in mathematical economics 5. Princeton, N.J.: Princeton University Press. 1974: viii+251. ISBN 978-0-691-04189-6. MR 0389160(英语).
Cassels (1981,第127 and 33–34页): Cassels, J. W. S. Appendix A Convex sets [附录A:凸集]. Economics for mathematicians [数学家的经济学]. London Mathematical Society lecture note series 62. Cambridge, UK: Cambridge University Press. 1981: xi+145. ISBN 0-521-28614-X. MR 0657578(英语).
Aubin (2007,第458–476页): Aubin, Jean-Pierre. 14.2 Duality in the case of non-convex integral criterion and constraints (especially 14.2.3 The Shapley–Folkman theorem, pages 463–465) [第14.2节:非凸积分准则和限制下的对偶性(尤其第14.2.3小节:沙普利-福克曼定理,pp. 463–465]. Mathematical methods of game and economic theory [赛局与经济理论的数学方法] 连新序言,重印1982年North-Holland修订英文版. Mineola, N.Y.: Dover Publications, Inc. 2007: xxxii+616. ISBN 978-0-486-46265-3. MR 2449499(英语).
Trockel (1984,第30页): Trockel, Walter. Market demand: An analysis of large economies with nonconvex preferences [市场需求:分析非凸偏好的大经济体]. Lecture Notes in Economics and Mathematical Systems 223. Berlin: Springer-Verlag. 1984: viii+205. ISBN 3-540-12881-6. MR 0737006(英语).
Lemaréchal (1973,第38页): Lemaréchal, Claude. Utilisation de la dualité dans les problémes non convexes [在非凸问题使用对偶] (报告). Domaine de Voluceau, Rocquencourt, Le Chesnay, France: IRIA(现INRIA), Laboratoire de recherche en informatique et automatique: 41. April 1973 (法语). |issue=被忽略 (帮助)
勒马雷沙尔的实验,日后有下列论文讨论:
Ekeland, Ivar. Une estimation a priori en programmation non convexe [非凸规划中的先验估计]. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences [(法国)科学院周刊]. Séries A et B. 1974, 279: 149–151. ISSN 0151-0509. MR 0395844(法语).
Cassels (1975,第433–434页): Cassels, J. W. S. Measures of the non-convexity of sets and the Shapley–Folkman–Starr theorem [集合的非凸度与沙普利-福克曼-斯塔定理]. Mathematical Proceedings of the Cambridge Philosophical Society. 1975, 78 (3): 433–436. MR 0385711. doi:10.1017/S0305004100051884(英语).
Weil (1982,第203, and 205–206页): Weil, Wolfgang. An application of the central limit theorem for Banach-space–valued random variables to the theory of random sets [取值于巴拿赫空间随机变量的中央极限定理,应用于随机集理论]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete [概率论与相关领域期刊]. 1982, 60 (2): 203–208. MR 0663901. doi:10.1007/BF00531823(英语).
Cerf (1999,第243–244页): Cerf, Raphaël. Large deviations for sums of i.i.d. random compact sets [独立同分布随机紧集之和的大离差]. Proceedings of the American Mathematical Society. 1999, 127 (8): 2431–2436. MR 1487361. doi:10.1090/S0002-9939-99-04788-7(英语). 瑟夫(Cerf)用到 Puri & Ralescu (1985,第154–155页)应用沙普利-福克曼引理的结果。
Tardella (1990,第478–479页): Tardella, Fabio. A new proof of the Lyapunov convexity theorem [李亚普诺夫凸性定理的新证]. SIAM Journal on Control and Optimization. 1990, 28 (2): 478–481. MR 1040471. doi:10.1137/0328026(英语).
凸集的概念(即该集合包含连接其任意两点的线段),已经多次成为1964年以前经济理论的核心。引入积分理论研究经济竞争后,得以新眼光看待此事:若经济体的每个参与者,对应商品空间的某个任意集合,而又对一族不重要的参与者取平均,则所得的集合必然为凸。[德布鲁附注:“此为A. A. 李亚普诺夫的定理的直接推论,参见Vind (1964)。”] 但⋯⋯诸价格函数⋯⋯可以因平均而产生的凸性解释。商品空间中,对一族不重要参与者加总可以得到凸性,是经济理论⋯⋯从积分理论得来的观察。 [删节后译文]
Debreu, Gérard. The Mathematization of economic theory [经济理论的数学化]. The American Economic Review. March 1991, 81 (Presidential address delivered at the 103rd meeting of the American Economic Association, 29 December 1990, Washington, DC): 1–7. JSTOR 2006785(英语).
Mas-Colell (1978,第210页): Mas-Colell, Andreu. A note on the core equivalence theorem: How many blocking coalitions are there? [记核等价定理:有多少个联盟在阻碍?]. Journal of Mathematical Economics. 1978, 5 (3): 207–215. MR 0514468. doi:10.1016/0304-4068(78)90010-1(英语).
Anderson, Robert M. Nonconvex preferences and approximate equilibria [非凸偏好与近似均衡](PDF). Economics 201B: Economic Theory (Handouts) [经济学201B: 经济理论(课堂讲义)]. Robert M. Anderson's homepage (Berkeley, Calif.). 14 March 2005: 1–5 [1 January 2011]. (原始内容存档(PDF)于2012-03-10) (英语).
Arrow, Kenneth J.; Hahn, Frank H. General competitive analysis [一般竞争分析]. Advanced Textbooks in Economics 12 San Francisco, CA: Holden-Day, Inc. Mathematical Economics Texts 6之重印版. Amsterdam: North-Holland. 1980 [1971]. ISBN 0-444-85497-5. MR 0439057(英语).
Artstein, Zvi. Discrete and continuous bang-bang and facial spaces, or: Look for the extreme points [离散与连续砰砰及面空间,又或:找极值点]. SIAM Review. 1980, 22 (2): 172–185. JSTOR 2029960. MR 0564562. doi:10.1137/1022026(英语).
Ekeland, Ivar. Appendix I: An a priori estimate in convex programming [附录一:凸规划的先验估计]. Ekeland, Ivar; Temam, Roger (编). Convex analysis and variational problems [凸分析与变分问题]. Classics in Applied Mathematics 28 Corrected reprinting of the North-Holland. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). 1999: 357–373 [1976]. ISBN 0-89871-450-8. MR 1727362(英语).
Green, Jerry; Heller, Walter P. 1 Mathematical analysis and convexity with applications to economics [第1章:数学分析与凸性,及在经济学之应用]. Arrow, Kenneth Joseph; Intriligator, Michael D (编). Handbook of mathematical economics, Volume I. Handbooks in Economics 1. Amsterdam: North-Holland Publishing Co. 1981: 15–52. ISBN 0-444-86126-2. MR 0634800. doi:10.1016/S1573-4382(81)01005-9(英语).
Starr, Ross M. 8 Convex sets, separation theorems, and non-convex sets in RN (new chapters 22 and 25–26 in (2011) second ed.) [第8章:RN中的凸集、分离定理、非凸集(及2011年第二版新增的第22、25、26诸章)]. General equilibrium theory: An introduction [一般均衡理论:导论] First. Cambridge, UK: Cambridge University Press. 1997: xxiii+250. ISBN 0-521-56473-5. MR 1462618(英语).
Anderson, Robert M. Nonconvex preferences and approximate equilibria [非凸偏好与近似均衡](PDF). Economics 201B: Economic Theory (Handouts) [经济学201B: 经济理论(课堂讲义)]. Robert M. Anderson's homepage (Berkeley, Calif.). 14 March 2005: 1–5 [1 January 2011]. (原始内容存档(PDF)于2012-03-10).