Loading AI tools
来自维基百科,自由的百科全书
在一般化学与原子物理学中,电子亲合能(或电子亲和势、电子亲和力,electron affinity,Eea)的定义是,将单个电子结合到电中性的气态原子或分子上所释放的能量[1]:
此条目内容疑欠准确,有待查证。 (2014年11月3日) |
注意在此定义下,大多数元素原子的电子亲和能为正数,即结合电子的过程是放热的。这里定义的电子亲和能的正负号选取和一般热力学的定义相反。
在固体物理学之中,对于一表面的电子亲合能定义不同。
并非所有的元素的电子亲合能均为正,电子亲合能为正表示其 -1 价的离子需吸收能量才能变为电中性的原子(早期的教科书写有些元素,例如稀有气体,其电子亲合能为负,此说法并未被现代的化学家接受)。若其阴离子较不稳定,容易变成原子,则其电子亲合能较低。元素中氯的电子亲合能最高,汞和稀有气体等元素的电子亲合能都接近零。一般来说,非金属的电子亲合能都比金属高。
总的来说,同一周期从左至右,价壳层电子递增,使得原子稳定性上升,原子半径递减,对电子的吸引能力渐强,因而电子亲合能递增;同族元素从上到下,因原子半径的增大,而且总电子数增加,原子稳定性下降,元素电负性值递减。 实际上,随核电荷数递增或同族元素从上到下,电子亲和能的变化并不单调。
下列数据以kJ/mol为单位。带星号的元素在量子力学基态被认为有接近零的电子亲合能。
周期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 电子层 | O族电子数 | |
| |||||||||||||||||||||
族 | I A | 0 | |||||||||||||||||||
1 | 73 H 氢 |
* He 氦 |
K |
2 | |||||||||||||||||
II A | III A | IV A | V A | VI A | VII A | ||||||||||||||||
2 | 60 Li 锂 |
* Be 铍 |
27 B 硼 |
122 C 碳 |
−7 N 氮 |
141 O 氧 |
328 F 氟 |
* Ne 氖 |
L K |
8 2 | |||||||||||
3 | 53 Na 钠 |
* Mg 镁 |
42 Al 铝 |
134 Si 硅 |
72 P 磷 |
200 S 硫 |
349 Cl 氯 |
* Ar 氩 |
M L K |
8 8 2 | |||||||||||
III B | IV B | V B | VI B | VII B | VIII | I B | II B | ||||||||||||||
4 | 48 K 钾 |
2 Ca 钙 |
18 Sc 钪 |
8 Ti 钛 |
51 V 钒 |
65 Cr 铬 |
0 Mn 锰 |
15 Fe 铁 |
64 Co 钴 |
112 Ni 镍 |
119 Cu 铜 |
* Zn 锌 |
41 Ga 镓 |
119 Ge 锗 |
79 As 砷 |
195 Se 硒 |
325 Br 溴 |
* Kr 氪 |
N M L K |
8 18 8 2 | |
5 | 47 Rb 铷 |
5 Sr 锶 |
30 Y 钇 |
41 Zr 锆 |
86 Nb 铌 |
72 Mo 钼 |
53 Tc 锝 |
101 Ru 钌 |
110 Rh 铑 |
54 Pd 钯 |
126 Ag 银 |
* Cd 镉 |
39 In 铟 |
107 Sn 锡 |
101 Sb 锑 |
190 Te 碲 |
295 I 碘 |
* Xe 氙 |
O N M L K |
8 18 18 8 2 | |
6 | 46 Cs 铯 |
14 Ba 钡 |
镧系 |
* Hf 铪 |
31 Ta 钽 |
79 W 钨 |
15 Re 铼 |
104 Os 锇 |
150 Ir 铱 |
205 Pt 铂 |
223 Au 金 |
* Hg 汞 |
36 Tl 铊 |
35 Pb 铅 |
91 Bi 铋 |
190 Po 钋 |
270 At 砹 |
* Rn 氡 |
P O N M L K |
8 18 32 18 8 2 | |
7 | Fr 钫 |
Ra 镭 |
锕系 |
Rf 𬬻 |
Db 𬭊 |
Sg 𬭳 |
Bh 𬭛 |
Hs 𬭶 |
Mt 鿏 |
Ds 𫟼 |
Rg 𬬭 |
Cn 鿔 |
Nh 鿭 |
Fl 𫓧 |
Mc 镆 |
Lv 𫟷 |
Ts 鿬 |
Og 鿫 |
|||
镧系元素 | 45 La 镧 |
92 Ce 铈 |
Pr 镨 |
Nd 钕 |
Pm 钷 |
Sm 钐 |
Eu 铕 |
Gd 钆 |
Tb 铽 |
Dy 镝 |
Ho 钬 |
Er 铒 |
99 Tm 铥 |
Yb 镱 |
33 Lu 镥 | ||||||
锕系元素 | Ac 锕 |
Th 钍 |
Pa 镤 |
U 铀 |
Np 镎 |
Pu 钚 |
Am 镅 |
Cm 锔 |
Bk 锫 |
Cf 锎 |
Es 锿 |
Fm 镄 |
Md 钔 |
No 锘 |
Lr 铹 |
碱金属 | 碱土金属 | 镧系元素 | 锕系元素 | 过渡金属 |
主族金属 | 类金属 | 非金属 | 卤素 | 稀有氣體 |
元素 | 电子亲合能 (kJ/mol) |
参考资料 |
---|---|---|
氢 | 72.77 | Pekeris (1962). Lykke, Murray & Lineberger (1991). |
氦 | -48±20(估计) | [2] |
锂 | 59.62 | Hotop & Lineberger (1985). Dellwo et al. (1992). Haeffler et al. (1996a). |
铍 | -48±20(估计) | [2] |
硼 | 26.99 | Scheer, Bilodeau & Haugen (1998). |
碳 | 121.78 | Scheer et al. (1998a). |
氮 | -6.8 | [2] |
氧 | 141.004 | Hotop & Lineberger (1985). Blondel (1995). Valli, Blondel & Delsart (1999). |
氟 | 328.165 | Blondel et al. (1989). Blondel, Delsart & Goldfarb (2001). |
氖 | -116±19(估计) | [2] |
钠 | 52.87 | Hotop & Lineberger (1985) |
铝 | 41.86 | Scheer et al. (1998b) |
硅 | 134.07 | Scheer et al. (1998a). Blondel, Delsart & Goldfarb (2001). |
磷 | 72.03 | Hotop & Lineberger (1985). |
硫 | 200.410 | Blondel (1995). |
氯 | 349 | Moore (1970). |
钾 | 48.38 | Slater et al. (1978). Andersson et al. (2000). |
钙 | 2.37 | Petrunin et al. (1996). |
钪 | 18(2) | Feigerle, Herman & Lineberger (1981). |
钛 | 8.4(7) | Ilin, Sakharov & Serenkov (1987). |
钒 | 51 | Hotop & Lineberger (1985). |
铬 | 65.2 | Bilodeau, Scheer & Haugen (1998). |
铁 | 14.6(3) | Leopold & Lineberger (1986). |
钴 | 64.0 | Scheer et al. (1998c). |
镍 | 111.6 | Scheer et al. (1998c). |
铜 | 119.24 | Bilodeau, Scheer & Haugen (1998). |
镓 | 41(3) | Williams et al. (1998a). |
锗 | 118.94 | Scheer et al. (1998a). |
砷 | 78.5(7) | Lippa et al. (1998). |
硒 | 194.97 | Hotop & Lineberger (1985). Mansour et al. (1988). |
溴 | 342.54 | Blondel et al. (1989). |
铷 | 46.89 | Frey, Breyer & Hotop (1978). |
锶 | 5.02 | Andersen et al. (1997). |
钇 | 30 | Feigerle, Herman & Lineberger (1981). |
锆 | 41 | Hotop & Lineberger (1985). |
铌 | 86(2) | Hotop & Lineberger (1985). |
钼 | 72.3 | Bilodeau, Scheer & Haugen (1998). |
钌 | 101.0 | Norquist et al. (1999). |
铑 | 110.3 | Scheer et al. (1998c). |
钯 | 54.24 | Scheer et al. (1998c). |
银 | 125.86 | Biladeau, Scheer & Haugen (1998). |
铟 | 39 | Williams et al. (1998b). |
锡 | 107.30 | Scheer et al. (1998a). |
锑 | 101.06 | Scheer, Haugen & Beck (1997). |
碲 | 190.16 | Hotop & Lineberger (1985). Haeffler et al. (1996b). |
碘 | 295 | Moore (1970). |
铯 | 45.51 | Slater et al. (1978). Scheer et al. (1998d). |
钡 | 13.95 | Petrunin et al. (1995). |
镧 | 45(2) | Covington et al. (1998). |
铈 | 92(2) | Davis & Thompson (2002a). |
铥 | 99(2) | Davis & Thompson (2002b). |
镏 | 33 | Davis & Thompson (2001). |
铪 | 0.00 | Periodic Table of the Elements(2017) |
钽 | 31 | Hotop & Lineberger (1985). |
钨 | 79 | Hotop & Lineberger (1985). Bengali et al. (1992). |
锇 | 104.0 | Biladeau & Haugen (2000). |
铱 | 150.9 | Biladeau et al. (1999). |
铂 | 205.04 | Biladeau et al. (1999). |
金 | 222.75 | Hotop & Lineberger (1985). |
铊 | 36 | Carpenter, Covington & Thompson (2000). |
铅 | 35 | Hotop & Lineberger (1985). |
铋 | 90.92 | Biladeau & Haugen (2001). |
钋 | 183.3 | [3] |
砹 | 270.1 | [3] |
电子亲合能 Eea 的定义也可以延伸到分子。如苯和萘的电子亲合能为负值,而蒽 、菲、芘的电子亲合能为正值。电脑模拟实验证实六氰基苯 C6(CN)6 的电子亲合能较富勒烯要高。[4]
分子 | 电子亲合能 (kJ/mol) |
参考资料 |
---|---|---|
双原子分子 | ||
溴分子 | 244 | Janousek & Brauman (1979) |
氯气 | 227 | Janousek & Brauman (1979) |
氟气 | 297 | Janousek & Brauman (1979) |
碘分子 | 246 | Janousek & Brauman (1979) |
氧气 | 43 | CRC Handbook |
溴化碘 | 251 | Janousek & Brauman (1979) |
氯化锂 | 59 | Janousek & Brauman (1979) |
一氧化氮 | 2 | Janousek & Brauman (1979) |
三原子分子 | ||
二氧化氮 | 222 | Janousek & Brauman (1979) |
二氧化硫 | 105 | Janousek & Brauman (1979) |
多原子分子 | ||
苯 | −110 | Janousek & Brauman (1979) |
1,4-苯二酮 | 129 | CRC Handbook |
三氟化硼 | 255 | CRC Handbook |
硝酸 | 59 | Janousek & Brauman (1979) |
硝基甲烷 | 38 | Janousek & Brauman (1979) |
三氯化磷 | 134 | Janousek & Brauman (1979) |
六氟化硫 | 138 | CRC Handbook |
四氰乙烯 | 278 | CRC Handbook |
六氟化钨 | 264 | CRC Handbook |
六氟化铀 | 280 | CRC Handbook |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.