Remove ads
From Wikipedia, the free encyclopedia
Trong toán học, khi các phần tử của một tập hợp có quan hệ tương đương với nhau với nhau, ta có thể tách tập thành các lớp tương đương. Các lớp này được xây dựng sao cho hai phần tử và thuộc cùng một lớp tương đương khi và chỉ khi chúng tương đương với nhau.
Cụ thể hơn, cho tập và quan hệ tương đương trên lớp tương đương của phần tử trong ký hiệu bởi [1] là tập [2] các phần tử tương đương với Ta có thể chứng minh từ định nghĩa lớp tương đương rằng các lớp tương đương tạo thành phân hoạch tập hợp của Tập các lớp tương đương này được gọi là tập hợp thương hay không gian thương của bởi và ký hiệu bởi
Khi tập hợp có một số cấu trúc đại số (ví dụ như đi kèm phép toán nhóm hay là một nhóm topo và quan hệ tương đương tương thích với cấu trúc đó thì tập thương cũng sẽ giữ cấu trúc thêm vào từ tập mẹ. Các ví dụ bao gồm không gian thương trong đại số tuyến tính, nhóm thương, không gian đồng nhất, vành thương, monoid thương, và các phạm trù thương.
Quan hệ tương đương trên tập là quan hệ hai ngôi trên thỏa mãn ba tính chất sau:[6][7]
Lớp tương đương thường được ký hiệu , , hoặc và được định nghĩa là tập của các phần tử có quan hệ với bởi [2].
Tập các lớp tương đương của với quan hệ tương đương được ký hiệu bởi và được gọi là tập thương của bởi .[8] Phép toàn ánh từ tới ánh xạ từng phần tử sang lớp tương đương của chính nó được gọi là phép chiếu chính tắc.
Mỗi phần tử của mỗi lớp tương đương đều là đặc trưng của lớp đó, và do đó có thể đại diện cho lớp đó. Khi một phần tử trong lớp được chọn, nó được gọi là đại diện của lớp đó. Phép chọn đại diện của mỗi lớp là một đơn ánh từ sang X.
Mỗi phần tử thuộc là phần tử của lớp tương đương Bất cứ hai lớp tương đương và hoặc bằng nhau hoặc không giao nhau. Do đó, tập các lớp tương đương của tạo thành phân hoạch tập hợp của : mỗi phần tử thuộc chỉ thuộc duy nhất một lớp tương đương.[9] Ngược lại, mỗi phân hoạch của đến từ quan hệ tương đương theo cách đó thì, khi và chỉ khi và thuộc chung một tập phân hoạch.[10]
Từ tính chất của quan hệ tương đương, ta có khi và chỉ khi
Nói cách khác, nếu là quan hệ tương đương trên tập và là hai phần tử thuộc thì các phát biểu sau là tương đương:
Đồ thị vô hướng có thể dùng với bất cứ quan hệ đối xứng trên tập với các đỉnh là các phần tử thuộc và mỗi hai đỉnh và được nối với nhau khi và chỉ khi Đồ thị của quan hệ tương đương là đồ thị mà các thành phần liên thông là các clique.[4]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.