Топ питань
Часова шкала
Чат
Перспективи

Чотирикутник

З Вікіпедії, вільної енциклопедії

Чотирикутник
Remove ads

Чотирикутник — це частина площини, обмежена простою замкненою ламаною, яка містить чотири (4) ланки. Вона складається з чотирьох (4) вершин (точок) і чотирьох сторін (відрізків), що послідовно їх сполучають. При цьому жодні три з даних точок не повинні лежати на одній прямій. Вершини чотирикутника називаються сусідніми, якщо вони є кінцями однієї з його сторін. Несусідні вершини називаються протилежними. Відрізки, що сполучають протилежні вершини чотирикутника, називаються діагоналями.

Thumb
Зображення 1. Приклад чотирикутника
Коротка інформація Попередник, Наступник ...
Remove ads

У чотирикутнику на зображені 1 діагоналями є відрізки AC і BD.

Сторони чотирикутника, що виходять з однієї вершини, називаються сусідніми сторонами. Сторони, які не мають спільного кінця, називаються протилежними сторонами. У чотирикутнику на даному малюнку протилежними сторонами є сторони AB і CD, BC і AD. Чотирикутник позначають, записуючи його вершини. Наприклад, чотирикутник на зображені 1 позначено так: ABCD. У позначенні чотирикутника вершини, що стоять поряд, повинні бути сусідніми. Чотирикутник ABCD можна також позначити BCDA або DCBA. Але не можна позначити ABDC (B і D — не сусідні вершини).

Внутрішні кути простого чотирикутника ABCD мають в сумі 360 градусів, тобто

Сума довжин усіх сторін чотирикутника називається периметром.

Remove ads

Прості чотирикутники

Узагальнити
Перспектива

Будь-який чотирикутник, сторони якого не перетинаються є простим чотирикутником.

Опуклі чотирикутники

В опуклих чотирикутників всі внутрішні кути є меншими за 180°, а дві діагоналі знаходяться в середині чотирикутника.

  • Неправильний чотирикутник: не має паралельних сторін.
  • Трапеція: одна пара протилежних сторін є паралельною.
  • Рівнобічна трапеція: одна пара протилежних сторін є паралельними, а кути нахилу сторін при основі є рівними. Альтернативними визначеннями є: чотирикутник що має вісь симетрії, яка перетинає пару протилежних сторін, або трапеція із діагоналями рівної довжини.
  • Паралелограм: чотирикутник із двома парами паралельних сторін. еквівалентною умовою є те, що його протилежні сторони мають однакову довжину; що протилежні кути рівні; або що діагоналі перетинаються і ділять одна одну навпіл. До паралелограмів відноситься ромб, прямокутник, а також квадрат.
  • Ромб: всі чотири сторони мають однакову довжину. Або еквівалентно: діагоналі перпендикулярні і перетином ділять навпіл одна одну. Не формально це є «сплюснутий квадрат» (але строго математично квадрат теж є ромбом).
  • Ромбоїд: паралелограм в якого суміжні сторони мають різні довжини а деякі кути тупими (не має прямих кутів). Деякі джерела називають його паралелограмом, що не є ромбом.[1]
  • Прямокутник: всі чотири кути є прямими кутами. Еквівалентно: діагоналі мають однакову довжину і при перетині діляться навпіл. До прямокутників відноситься і квадрат.
  • Квадрат: всі чотири сторони мають однакову довжину, а чотири кути є прямими. Діагоналі перетинають одна одну навпіл і під прямим кутом, а також мають однакову довжину. Чотирикутник є квадратом тоді і лише тоді, коли він одночасно є ромбом і прямокутником (чотири рівні сторони і чотири однакові кути).
  • Дельтоїд: дві пари прилеглих сторін мають однакову довжину. З цього випливає, що одна з діагоналей розділяє дельтоїд на конгруентні трикутники, і два кути між парами нерівних сторін мають однакову величину. Також, його діагоналі є перпендикулярними. До дельтоїдів відноситься ромб.

Thumb

Увігнуті чотирикутники

В увігнутих чотирикутників, один із внутрішніх кутів є більшим за 180° а одна із двох діагоналей лежить за межами чотирикутника.

Remove ads

Складні чотирикутники

Thumb
Антипаралелограм

До складних чотирикутників відносять не правильні чотирикутники, грані яких перетинаються. Такі чотирикутники перетинають самі себе і мають ряд не формальних назв: перехрещений чотирикутник, чотирикутник-метелик або бантик. Сума внутрішніх кутів перехрещеного чотирикутника буде дорівнювати 720°, а два внутрішні кути в ньому є розгорнутими і знаходяться ззовні. Тобто перехрещеного чотирикутника, чотири «внутрішні» кути знаходяться по обидві сторони перетину (два гострих і два розгорнутих, всі з лівої сторони або з правою, в залежності від того в якому порядку перераховуються).[2]

  • Перехрещена трапеція[3]: перехрещений чотирикутник, в якому (як у трапеції) одна пара не суміжних сторін є паралельною
  • Антипаралелограм: перехрещений чотирикутник в якого (як в паралелограма) кожна пара не суміжних сторін мають однакову довжину.
  • Перехрещений прямокутник: це антипаралелограм, сторонами якого є дві протилежні сторони і дві діагоналі звичайного прямокутника, таким чином від має одну пару протилежних сторін, що є паралельними.
  • Перехрещений квадрат: особливий випадок перехрещеного прямокутника, в якого дві сторони перетинаються під прямими кутами.
Remove ads

Повний чотирибічник

Thumb
Повний чотирибічник

Хоча така назва може бути еквівалентна чотирикутнику, в неї часто вкладають додатковий сенс. Четвірка прямих, ніякі дві з яких не паралельні і ніякі три не проходять через одну точку, називається повним чотирибічником. Така конфігурація зустрічається в деяких твердженнях евклідової геометрії (наприклад, теорема Менелая, пряма Ньютона - Гауса, пряма Обера, Теорема Мікеля тощо), в яких часто всі прямі є взаємозамінними.

Особливі відрізки

Двома діагоналями опуклого чотирикутника є відрізки, що сполучають протилежні вершини.

Двома бімедіанами (англ. bimedians) опуклого чотирикутника є відрізки, що сполучають середини протилежних сторін[4]. Вони перетинаються у точці, яка називається «центроїдом» вершин чотирикутника.

Також в опуклому чотирикутнику бівисотою (англ. maltitude) будемо називати висоту, яка має основу у середині протилежної сторони[5]. Всього у чотирикутнику можна провести чотири бівисоти.

Remove ads

Площа

Узагальнити
Перспектива

Існує декілька загальних формул розрахунку площі S опуклого чотирикутника ABCD із сторонами a = AB, b = BC, c = CD і d = DA.

Тригонометричні формули

Площа чотирикутника може бути задана за допомогою тригонометричних функцій таким чином:

де довжини кожної діагоналі задані як e і f, а кут між ними дорівнює θ.[6] У випадку коли діагоналі перпендикулярні (тобто для ромба, квадрата і дельтоїда), ця формула спрощується до оскільки θ дорівнює 90°.

Площу можна розрахувати через бімедіани таким чином[7]

Де довжини медіан дорівнюють m і n, а кут між ними дорівнює φ.

Формула Бретшнайдера[8] визначає площу черед дві сторони і два протилежних кута:

де сторони відповідно задані як a, b, c, d, і де s є півпериметром, а A і C є двома (будь-якими) протилежними кутами. Для вписаного чотирикутника цей вираз спрощується до формули Брамагупти, оскільки A + C = 180°.

Іншою формулою для розрахунку площі через кути і сторони, де кут C знаходиться між сторонами b і c, а кут A між сторонами a та d, є

У випадку із вписаним чотирикутником, остання формула скорочується до

Для паралелограма, де обидві пари протилежних сторін і кутів є рівними, ця формула в свою чергу спрощується до виразу

Альтернативним чином, можна визначити площу чотирикутника через сторони і кут перетину його діагоналей θ, для тих випадків доки цей кут не дорівнює 90°:[9]

У випадку з паралелограмом, остання формула буде виглядати як

Іншою формулою, що містить сторони a, b, c, d є[7]

де x є відстанню між середніми точками діагоналей, а φ є кутом між бімедіанами.

І ще однією тригонометричною формулою, що містить сторони a, b, c, d і кут α між a і b є:

що може використовуватися і як площа увігнутого чотирикутника (що має увігнуту частину протилежну до кута α) змінивши перший знак + на -.


Не-тригонометричні формули

Дві наступні формули задають площу S чотирикутника через сторони a, b, c, d, напівпериметр s, і діагоналі e, f:

[10]
[11]

Перше рівняння зводиться до формули Брахмагупти для вписаного чотирикутника, оскільки в такому випадку ef = ac + bd.

Площу також можна задати через бімедіани m, n і діагоналі e, f:

[12]
[13]:Thm. 7

Насправді, будь-яке з трьох значень m, n, e, і f є достатнім для визначення площі, оскільки для будь-якого чотирикутника ці чотири значення пов'язані рівнянням [14]:p. 126 Відповідними спрощеними виразами будуть такі рівняння для розрахунку площі:[15]

якщо дані довжини двох бімедіан і діагональ, і[15]

якщо відомі довжини двох діагоналей і одна бімедіана.

Векторна форма

Площу чотирикутника ABCD можна розрахувати за допомогою векторів. Нехай вектори AC і BD утворюють діагоналі від A до C і від B до D. Площа чотирикутника тоді дорівнюватиме

що є половиною величини векторного добутку векторів AC і BD. У двовимірному Евклідовому просторі, вектор AC можна задати у вигляді вектора у Декартовому просторі як (x1,y1) і вектор BD як (x2,y2), тому рівняння можна переписати таким чином:

Remove ads

Теореми

  1. Добутки площ трикутників, утворених частинами діагоналей від їх країв до їх перетину і протилежними сторонами чотирикутника, рівні.
  2. Сума кутів опуклого чотирикутника дорівнює 360°.
  3. У будь-якому вписаному чотирикутнику суми протилежних кутів дорівнють 180°.
  4. У будь-якому описаному чотирикутнику суми протилежних сторін рівні.

Діагоналі

Узагальнити
Перспектива

Довжина діагоналей

Довжини діагоналей опуклого чотирикутника ABCD із відповідними вершинами A, B, C, D і сторонами a = AB, b = BC, c = CD, і d = DA, довжини діагоналей p = AC і q = BD можна розрахувати за допомогою теореми косинусів для кожного трикутника, що утворені діагоналями і двома сторонами чотирикутника. Таким чином

і

Інші, більш симетричні формули для знаходження довжин діагоналей:[16]

і

Узагальнення правила паралелограма і теореми Птолемея

Для будь-якого опуклого чотирикутника ABCD, сума квадратів чотирьох сторін дорівнює сумі квадратів двох діагоналей плюс чотири квадрати лінійного сегменту, що сполучає середні точки діагоналей. Тобто

де x це відстань між середніми точками діагоналей.[14]:p.126 Це рівняння відоме як теорема Ейлера про чотирикутник і є узагальненням для правила паралелограма.

Німецький математик Карл Антон Бретшнейдер[en] в 1842 вивів наступне узагальнення для теореми Птолемея, стосовно добутку діагоналей опуклого чотирикутника[17]

Це рівняння можна вважати аналогічним до теореми косинусів для чотирикутника. Для вписаного чотирикутника, в якого , це рівняння спрощується до pq = ac + bd. Оскільки , таким чином, це також доводить нерівність Птолемея.

Remove ads

Бімедіани

Узагальнити
Перспектива
Thumb
Паралелограм Варіньона EFGH

Бімедіанами чотирикутника є такі лінійні відрізки, що сполучають середні точки його протилежних сторін. Перетином бімедіан є центроїд вершин чотирикутника.[18]

Середні точки будь-якого чотирикутника (опуклого, увігнутого або перехрещеного) є вершинами паралелограма, що називається паралелограмом Варіньона. Він має такі властивості:

  • Кожна пара протилежних сторін паралелограма Варіньона є паралельними діагоналі початкового чотирикутника.
  • Сторона паралелограма Варіньона має довжину, що дорівнює половині довжини діагоналі початкового чотирикутника до якої ця сторона є паралельною.
  • Площа паралелограма Варіньона дорівнює половині площі початкового чотирикутника. Це є вірним для опуклих, увігнутих і перехрещених чотирикутників, де площа останнього задається як різниці площ трикутників з яких він складається.[19]
  • Периметр паралелограма Варіньона дорівнює сумі довжин діагоналей початкового чотирикутника.
  • Діагоналі паралелограма Варіньона є бімедіанами початкового чотирикутника.

Дві бімедіани чотирикутника і лінійні відрізки, що сполучають середні точки діагоналей в тому чотирикутнику є конкурентними прямими і всі поділяються навпіл точкою їх перетину.[14]:p.125

Для опуклого чотирикутника із сторонами a, b, c і d, довжина бімедіани, що сполучає середні точки сторін a і c дорівнюватиме

де p і q є довжинами діагоналей.[20] Довжина бімедіани, що сполучає середні точки сторін b і d дорівнює

Отже[14]:p.126

Це також є наслідком застосування правила паралелограма до паралелограма Варіньона.

Довжину бімедіан також можна виразити через дві протилежні сторони і відстань x між середніми точками діагоналей. Це можна отримати застосувавши теорему Ейлера для чотирикутників щодо вищезгаданих формул. Звідки отримаємо[13]

і

Зверніть увагу, що дві протилежні сторони в цих формулах не є тими двома сторонами, що сполучає бімедіана.

Для опуклого чотирикутника є справедливим такий дуальний взаємозв'язок між бімедіанами і діагоналями:[21]

  • Дві бімедіани мають однакову довжину тоді і лише тоді, коли дві діагоналі є перпендикулярними.
  • Дві бімедіани є перпендикулярними, толі і лише тоді, коли дві діагоналі мають однакову довжину.
Remove ads

Тригонометричні тотожності

Узагальнити
Перспектива

Чотири кути простого чотирикутника ABCD задовольняють таким рівнянням:[22]

і

Також,[23]

У двох останніх формулах, жоден з кутів не може бути прямим кутом, оскільки тангенс 90° є не визначеним.

Remove ads

Нерівності

Узагальнити
Перспектива

Площа

Якщо опуклий чотирикутник має сторони a, b, c, d і діагоналі p, q, тоді його площа S задовольняє нерівностям[24]

, що буде рівністю лише для прямокутника.
, що буде рівністю лише для квадрата.
, що буде рівністю лише якщо дві діагоналі є перпендикулярними і мають однакову довжину.
, що є рівністю лише для прямокутника.[7]

Із формули Бретшнайдера прямо випливає, що площа чотирикутника задовольнятиме нерівності

що буде рівністю тоді й лише тоді коли чотирикутник є вписаним чотирикутником або виродженим, тобто таким що довжина однієї зі сторін дорівнюватиме сумі довжин інших трьох (тобто він перетворився у відрізок, тому його площа дорівнює нулю).

Площа будь-якого чотирикутника також задовольнятиме нерівності[25]

Позначивши периметр чотирикутника як L, матимемо наступне[25]:p.114

що буде рівністю лише для випадку із квадратом.

Площа опуклого чотирикутника також задовольняє:

де довжини діагоналей задані як p і q, що буде рівністю лише за умови, що діагоналі перпендикулярні одна одній.

Діагоналі і бімедіани

Наслідком із теореми Ейлера про чотирикутники є така нерівність

де рівність буде справедливою, тоді й тільки тоді коли чотирикутник є паралелограмом.

Ейлер також узагальнив теорему Птолемея, що є рівністю для вписаного чотирикутника, у нерівність для опуклого чотирикутника. Нерівність задає таке:

що буде рівністю тоді й лише тоді, коли чотирикутник є вписаним.[14]:p.128–129.

В опуклому багатокутнику бімедіани m, n і діагоналі p, q пов'язані між собою нерівністю

де рівність буде справедливою тоді і лише тоді, коли діагоналі є рівними.[26]:Prop.1 Це прямо випливає із рівності для чотирикутника

Сторони

Сторони a, b, c, і d будь-якого чотирикутника задовольняють нерівностям[27]:p.228,#275

і [27]:p.234,#466

Remove ads

Просторові чотирикутники

Thumb
Червоним позначено бокові ребра чотирикутного рівностороннього тетраедра[en], який є правильним зигзагоподібним косим чотирикутником.

Чотирикутник, що не знаходиться в площині називається просторовим чотирикутником або косим чотирикутником. Формули для розрахунку його двогранних кутів при відомих довжинах ребер і кутів між двома прилеглими ребрами були отримані при вивчені властивостей молекул, таких як молекули циклобутана, які містять «замкнуте» кільце із чотирьох атомів.[28][29] Косий чотирикутник разом із своїми діагоналями утворює (не обов'язково правильний) тетраедр, і навпаки, кожен косий чотирикутник утворений із тетраедра, в якого усунута пара протилежних ребер.

Див. також

Примітки

Джерела

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads