Remove ads
З Вікіпедії, вільної енциклопедії
Чотирикутник — це частина площини, обмежена простою замкненою ламаною, яка містить чотири (4) ланки. Вона складається з чотирьох (4) вершин (точок) і чотирьох сторін (відрізків), що послідовно їх сполучають. При цьому жодні три з даних точок не повинні лежати на одній прямій. Вершини чотирикутника називаються сусідніми, якщо вони є кінцями однієї з його сторін. Несусідні вершини називаються протилежними. Відрізки, що сполучають протилежні вершини чотирикутника, називаються діагоналями.
Чотирикутник | |
Попередник | трикутник |
---|---|
Наступник | п'ятикутник |
Має вершину фігуру | відрізок |
Грань політопа | ребро |
Підтримується Вікіпроєктом | Вікіпедія:Проєкт:Математика |
Чотирикутник у Вікісховищі |
У чотирикутнику на зображені 1 діагоналями є відрізки AC і BD.
Сторони чотирикутника, що виходять з однієї вершини, називаються сусідніми сторонами. Сторони, які не мають спільного кінця, називаються протилежними сторонами. У чотирикутнику на даному малюнку протилежними сторонами є сторони AB і CD, BC і AD. Чотирикутник позначають, записуючи його вершини. Наприклад, чотирикутник на зображені 1 позначено так: ABCD. У позначенні чотирикутника вершини, що стоять поряд, повинні бути сусідніми. Чотирикутник ABCD можна також позначити BCDA або DCBA. Але не можна позначити ABDC (B і D — не сусідні вершини).
Внутрішні кути простого чотирикутника ABCD мають в сумі 360 градусів, тобто
Сума довжин усіх сторін чотирикутника називається периметром.
Будь-який чотирикутник, сторони якого не перетинаються є простим чотирикутником.
В опуклих чотирикутників всі внутрішні кути є меншими за 180°, а дві діагоналі знаходяться в середині чотирикутника.
В увігнутих чотирикутників, один із внутрішніх кутів є більшим за 180° а одна із двох діагоналей лежить за межами чотирикутника.
До складних чотирикутників відносять не правильні чотирикутники, грані яких перетинаються. Такі чотирикутники перетинають самі себе і мають ряд не формальних назв: перехрещений чотирикутник, чотирикутник-метелик або бантик. Сума внутрішніх кутів перехрещеного чотирикутника буде дорівнювати 720°, а два внутрішні кути в ньому є розгорнутими і знаходяться ззовні. Тобто перехрещеного чотирикутника, чотири «внутрішні» кути знаходяться по обидві сторони перетину (два гострих і два розгорнутих, всі з лівої сторони або з правою, в залежності від того в якому порядку перераховуються).[2]
Хоча така назва може бути еквівалентна чотирикутнику, в неї часто вкладають додатковий сенс. Четвірка прямих, ніякі дві з яких не паралельні і ніякі три не проходять через одну точку, називається повним чотирибічником. Така конфігурація зустрічається в деяких твердженнях евклідової геометрії (наприклад, теорема Менелая, пряма Ньютона - Гауса, пряма Обера, Теорема Мікеля тощо), в яких часто всі прямі є взаємозамінними.
Двома діагоналями опуклого чотирикутника є відрізки, що сполучають протилежні вершини.
Двома бімедіанами (англ. bimedians) опуклого чотирикутника є відрізки, що сполучають середини протилежних сторін[4]. Вони перетинаються у точці, яка називається «центроїдом» вершин чотирикутника.
Також в опуклому чотирикутнику бівисотою (англ. maltitude) будемо називати висоту, яка має основу у середині протилежної сторони[5]. Всього у чотирикутнику можна провести чотири бівисоти.
Існує декілька загальних формул розрахунку площі S опуклого чотирикутника ABCD із сторонами a = AB, b = BC, c = CD і d = DA.
Площа чотирикутника може бути задана за допомогою тригонометричних функцій таким чином:
де довжини кожної діагоналі задані як e і f, а кут між ними дорівнює θ.[6] У випадку коли діагоналі перпендикулярні (тобто для ромба, квадрата і дельтоїда), ця формула спрощується до оскільки θ дорівнює 90°.
Площу можна розрахувати через бімедіани таким чином[7]
Де довжини медіан дорівнюють m і n, а кут між ними дорівнює φ.
Формула Бретшнайдера[8] визначає площу черед дві сторони і два протилежних кута:
де сторони відповідно задані як a, b, c, d, і де s є півпериметром, а A і C є двома (будь-якими) протилежними кутами. Для вписаного чотирикутника цей вираз спрощується до формули Брамагупти, оскільки A + C = 180°.
Іншою формулою для розрахунку площі через кути і сторони, де кут C знаходиться між сторонами b і c, а кут A між сторонами a та d, є
У випадку із вписаним чотирикутником, остання формула скорочується до
Для паралелограма, де обидві пари протилежних сторін і кутів є рівними, ця формула в свою чергу спрощується до виразу
Альтернативним чином, можна визначити площу чотирикутника через сторони і кут перетину його діагоналей θ, для тих випадків доки цей кут не дорівнює 90°:[9]
У випадку з паралелограмом, остання формула буде виглядати як
Іншою формулою, що містить сторони a, b, c, d є[7]
де x є відстанню між середніми точками діагоналей, а φ є кутом між бімедіанами.
І ще однією тригонометричною формулою, що містить сторони a, b, c, d і кут α між a і b є:
що може використовуватися і як площа увігнутого чотирикутника (що має увігнуту частину протилежну до кута α) змінивши перший знак + на -.
Дві наступні формули задають площу S чотирикутника через сторони a, b, c, d, напівпериметр s, і діагоналі e, f:
Перше рівняння зводиться до формули Брахмагупти для вписаного чотирикутника, оскільки в такому випадку ef = ac + bd.
Площу також можна задати через бімедіани m, n і діагоналі e, f:
Насправді, будь-яке з трьох значень m, n, e, і f є достатнім для визначення площі, оскільки для будь-якого чотирикутника ці чотири значення пов'язані рівнянням [14] Відповідними спрощеними виразами будуть такі рівняння для розрахунку площі:[15]
якщо дані довжини двох бімедіан і діагональ, і[15]
якщо відомі довжини двох діагоналей і одна бімедіана.
Площу чотирикутника ABCD можна розрахувати за допомогою векторів. Нехай вектори AC і BD утворюють діагоналі від A до C і від B до D. Площа чотирикутника тоді дорівнюватиме
що є половиною величини векторного добутку векторів AC і BD. У двовимірному Евклідовому просторі, вектор AC можна задати у вигляді вектора у Декартовому просторі як (x1,y1) і вектор BD як (x2,y2), тому рівняння можна переписати таким чином:
Довжини діагоналей опуклого чотирикутника ABCD із відповідними вершинами A, B, C, D і сторонами a = AB, b = BC, c = CD, і d = DA, довжини діагоналей p = AC і q = BD можна розрахувати за допомогою теореми косинусів для кожного трикутника, що утворені діагоналями і двома сторонами чотирикутника. Таким чином
і
Інші, більш симетричні формули для знаходження довжин діагоналей:[16]
і
Для будь-якого опуклого чотирикутника ABCD, сума квадратів чотирьох сторін дорівнює сумі квадратів двох діагоналей плюс чотири квадрати лінійного сегменту, що сполучає середні точки діагоналей. Тобто
де x це відстань між середніми точками діагоналей.[14] Це рівняння відоме як теорема Ейлера про чотирикутник і є узагальненням для правила паралелограма.
Німецький математик Карл Антон Бретшнейдер[en] в 1842 вивів наступне узагальнення для теореми Птолемея, стосовно добутку діагоналей опуклого чотирикутника[17]
Це рівняння можна вважати аналогічним до теореми косинусів для чотирикутника. Для вписаного чотирикутника, в якого , це рівняння спрощується до pq = ac + bd. Оскільки , таким чином, це також доводить нерівність Птолемея.
Бімедіанами чотирикутника є такі лінійні відрізки, що сполучають середні точки його протилежних сторін. Перетином бімедіан є центроїд вершин чотирикутника.[18]
Середні точки будь-якого чотирикутника (опуклого, увігнутого або перехрещеного) є вершинами паралелограма, що називається паралелограмом Варіньона. Він має такі властивості:
Дві бімедіани чотирикутника і лінійні відрізки, що сполучають середні точки діагоналей в тому чотирикутнику є конкурентними прямими і всі поділяються навпіл точкою їх перетину.[14]
Для опуклого чотирикутника із сторонами a, b, c і d, довжина бімедіани, що сполучає середні точки сторін a і c дорівнюватиме
де p і q є довжинами діагоналей.[20] Довжина бімедіани, що сполучає середні точки сторін b і d дорівнює
Отже[14]
Це також є наслідком застосування правила паралелограма до паралелограма Варіньона.
Довжину бімедіан також можна виразити через дві протилежні сторони і відстань x між середніми точками діагоналей. Це можна отримати застосувавши теорему Ейлера для чотирикутників щодо вищезгаданих формул. Звідки отримаємо[13]
і
Зверніть увагу, що дві протилежні сторони в цих формулах не є тими двома сторонами, що сполучає бімедіана.
Для опуклого чотирикутника є справедливим такий дуальний взаємозв'язок між бімедіанами і діагоналями:[21]
Чотири кути простого чотирикутника ABCD задовольняють таким рівнянням:[22]
і
Також,[23]
У двох останніх формулах, жоден з кутів не може бути прямим кутом, оскільки тангенс 90° є не визначеним.
Якщо опуклий чотирикутник має сторони a, b, c, d і діагоналі p, q, тоді його площа S задовольняє нерівностям[24]
Із формули Бретшнайдера прямо випливає, що площа чотирикутника задовольнятиме нерівності
що буде рівністю тоді й лише тоді коли чотирикутник є вписаним чотирикутником або виродженим, тобто таким що довжина однієї зі сторін дорівнюватиме сумі довжин інших трьох (тобто він перетворився у відрізок, тому його площа дорівнює нулю).
Площа будь-якого чотирикутника також задовольнятиме нерівності[25]
Позначивши периметр чотирикутника як L, матимемо наступне[25]
що буде рівністю лише для випадку із квадратом.
Площа опуклого чотирикутника також задовольняє:
де довжини діагоналей задані як p і q, що буде рівністю лише за умови, що діагоналі перпендикулярні одна одній.
Наслідком із теореми Ейлера про чотирикутники є така нерівність
де рівність буде справедливою, тоді й тільки тоді коли чотирикутник є паралелограмом.
Ейлер також узагальнив теорему Птолемея, що є рівністю для вписаного чотирикутника, у нерівність для опуклого чотирикутника. Нерівність задає таке:
що буде рівністю тоді й лише тоді, коли чотирикутник є вписаним.[14] .
В опуклому багатокутнику бімедіани m, n і діагоналі p, q пов'язані між собою нерівністю
де рівність буде справедливою тоді і лише тоді, коли діагоналі є рівними.[26] Це прямо випливає із рівності для чотирикутника
Сторони a, b, c, і d будь-якого чотирикутника задовольняють нерівностям[27]
і [27]
Чотирикутник, що не знаходиться в площині називається просторовим чотирикутником або косим чотирикутником. Формули для розрахунку його двогранних кутів при відомих довжинах ребер і кутів між двома прилеглими ребрами були отримані при вивчені властивостей молекул, таких як молекули циклобутана, які містять «замкнуте» кільце із чотирьох атомів.[28][29] Косий чотирикутник разом із своїми діагоналями утворює (не обов'язково правильний) тетраедр, і навпаки, кожен косий чотирикутник утворений із тетраедра, в якого усунута пара протилежних ребер.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.