Remove ads
З Вікіпедії, вільної енциклопедії
Теорія категорій — розділ математики, що вивчає властивості відношень між математичними структурами, незалежно від внутрішньої будови структур; абстрагується від множин та функцій до діаграм, де об'єкти сполучені морфізмами (стрілками).
Теорія категорій посідає центральне місце в сучасній математиці[1], а також має застосування в інформатиці[2] та теоретичній фізиці[3][4]. Сучасне викладання алгебричної геометрії та гомологічної алгебри основане на теорії категорії. Поняття теорії категорій використане в мові функційного програмування Haskell.
Поняття категорія було введено в 1945 році. Своїм походженням теорія категорій завдячує алгебраїчній топології. Подальші дослідження виявили об'єднувальну та уніфікувальну роль поняття категорія і пов'язаного з ним поняття функтора для багатьох розділів математики.
Теоретико-категорний аналіз основ теорії гомології привів до виділення у середині 50-х рр. 20 ст. так званих абелевих категорій, в рамках яких виявилося можливим здійснити основні побудови гомологічної алгебри. У 60-і рр. 20 ст. позначилася дедалі більша цікавість до неабелевих категорій, спонуканий задачами логіки, загальної алгебри, топології і алгебраїчної геометрії. Інтенсивний розвиток універсальної алгебри і аксіоматична побудова теорії гомотопій поклали початок різним напрямам досліджень: категорному дослідженню многовидів універсальної алгебри, теорії ізоморфізмів прямих розкладів, теорії зв'язаних функторів і теорії двоїстості функторів. Подальший розвиток виявив істотний взаємозв'язок між цими дослідженнями. Завдяки виникненню теорії відносних категорій, що широко використовує техніку зв'язаних функторів і замкнутих категорій, була встановлена двоїстість між теорією гомотопій і теорією універсальних алгебр, заснована на інтерпретації категорних визначень моноїда і комоноїда у відповідних функторів. Інший спосіб введення додаткових структур в категоріях пов'язаний із заданням в категоріях топології і побудові категорії пучків над топологічною категорією (так зв. топоси).
Категорія складається з класу , елементи якого називаються об'єктами категорії, та класу , елементи якого називаються морфізмами категорії. Ці класи повинні задовольняти наступним умовам:
Всі перераховані вище категорії допускають ізоморфне вкладення в категорію множин. Категорії з такою властивістю називаються конкретними. Не всяка категорія є конкретною, наприклад, категорія, об'єктами якої є всі топологічні простори, а морфізмами — класи гомотопних відображень.
Стандартним способом опису тверджень теорії категорій є комутативні діаграми. Комутативна діаграма — це орієнтований граф, у вершинах якого знаходяться об'єкти, а стрілками є морфізми або функтори, причому результат композиції стрілок не залежить від вибраного шляху. Наприклад, аксіоми теорії категорій можна записати за допомогою діаграм:
Для категорії можна визначити двоїсту категорію , у якій:
Взагалі, для будь-якого твердження теорії категорій можна сформулювати подвійне твердження за допомогою звернення стрілок. Часто подвійне явище позначається тим же терміном з приставкою ко- (див. приклади далі).
Справедливий принцип двоїстості: твердження р істинно в теорії категорій тоді і тільки тоді, коли в цій теорії істинно двоїсте твердження р*. Багато понять і результатів в математиці виявилися двоїстими один одному з точки зору понять теорії категорій: ін'єктивність і сюр'єктивність, многовиди і радикали в алгебрі і т. д.
Композиція мономорфізмів є мономорфізмом.
Мономорфізм, епіморфізм і біморфізм є узагальненнями понять ін'єктивного, сюр'єктивного і бієктивного відображення відповідно.
Початковий (універсально відштовхуючий) об'єкт категорії — це такий об'єкт, з якого існує єдиний морфізм в будь-який інший об'єкт.
Якщо початкові об'єкти в категорії існують, то всі вони ізоморфні.
Двоїстим чином визначається термінальний (універсально притягуючий) об'єкт — це такий об'єкт, в який існує єдиний морфізм з будь-якого іншого об'єкта.
Морфізми та називаються проєкціями.
Якщо добуток і кодобуток існують, то вони визначаються однозначно з точністю до ізоморфізму.
Фактор-категорія — конструкція, яка є аналогічною конструкції фактор-множини або фактор-алгебри. Нехай — довільна категорія, у класі морфізмів задане відношення еквівалентності яке задовільняє наступним умовам
Через позначається клас еквівалентності морфізму Фактор-категорією категорії по відношенню еквівалентності називається категорія у якої ті самі об'єкти, що й у а для будь-якої пари об'єктів множина морфізмів складається з класів еквівалентності де у добуток морфізмів визначається формулою
Усяка мала категорія є фактор-категорії шляхів над підходячим орієнтованим графом.[6]
Ядерна пара морфізму — узагальнення поняття еквівалентности, індукованого відображенням однієї множини у іншу. Морфізми категорії є ядерною парою морфізму якщо та якщо для пари довільних морфізмів для якої існує такий єдиний морфізм що та
Функтори — відображення категорій, що зберігають структуру. Точніше
Клас об'єктів не обов'язково є множиною у сенсі аксіоматичної теорії множин. Категорія , у якій об'єкти є множиною та морфізми є множиною, називається малою.
Нехай — функтор з малої категорії у довільну. Шаром функтора над є категорія, об'єктами якої є пари об'єктів та морфізмів категорії , а морфізмами між парами — трійки морфізмів таких, що Двоїсто, ко-шаром називається категорія, яка складається з пар об'єктів та морфізмів у якій морфізмами є трійки які задовільняють співвідношенню Функтор (або, відповідно, ), який діє як на об'єктах й як на морфізмах, називається забуваючим функтором.
Нехай категорія та нехай — функтор, які називаються тензорним добутком. Категорія називається тензорною, якщо виконуються наступні умови:
Наприклад, для трійок та є такий ізоморфізм , що діаграма
є комутативною.[7]
Володимир Гершонович Дрінфельд визначив квазі-трикутну моноїдальну категорію. Нехай — категорія, об'єктами якої є -модулі, а Це — -лінійна адитивна категорія. Тепер нехай Розгляньмо гомоморфізм який визначається формулою , і Тут є морфізмом асоціативності (асоціатором Дрінфельда). Через позначений елемент Казіміра. Через позначені співвідношення шестикутника. Для довільних має місце тензорний добуток Морфізм асоціативності є елементом Для визначмо також скручення формулою де є перестановкою. Морфізми визначають структуру квазі-трикутної категорії на [8]
Функтором Сера триангульованої -лінійної -скінченної категорії є коваріантний адитивний функтор який комутує із зсувами, якщо має місце автоеквівалентність така, що мають місце біфункторіальні ізоморфізми
де Якщо функтор Сера існує, то він єдиний з точністю до ізоморфізму.
Для гладкого проективного многовиду розмірності й канонічного пучка класична двоїстість Сера
де є наслідком того, що є функтором Сера на довільній категорії обмежених комплексів когерентних пучків Якщо на триангульованій -лінійній -скінченній категорії є функтор Сера, то така категорія є категорією із двоїстістю Сера.
Нехай — скінченновимірна алгебра над яка має скінченну гомологічну розмірність, — довільна категорія скінченновимірних лівих -модулів. Наявні два функтори дуалізації, які переводять у (праві моулі), й навпаки:
Тут — категорія скінченнопороджених модулів над скінченновимірною -алгеброю глобальної розмірності. Композиція називається функтором Накаями й є функтором Сера у категорії
Тріагнульована -лінійна -скінченна категорія називається категорією Калабі-Яу, якщо триангульований -кратний функтор зсуву є функтором Сера. Найменше називається розмірністю Калабі-Яу категорії й позначається Якщо категорія не є категорією Калабі-Яу, то
Триангульовані категорії із двоїстістю Сера представляють інтерес тому, що на спадкових абелевих категоріях Нетер є двоїстість Сера.[9]
Мультикатегорією є набір об'єктів стрілок операція композиції визначається як у звичайній категорії. У звичайній категорії область визначення — одиничний об'єкт, тоді як у мультикатегорії це скінченна множина об'єктів. Іншими словами, для звичайної категорії тоді як у мультикатегорії
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.