Температура

фізична величина, яка описує стан термодинамічної системи З Вікіпедії, вільної енциклопедії

Температура

Температу́ра (від лат. temperatura — належне співвідношення, нормальний стан) фізична величина, яка описує стан термодинамічної системи. Вона є найважливішим параметром стану із застосовуваних у термодинаміці і однією із семи фізичних величин, на яких базується Міжнародна система одиниць (SI)[1].

Коротка інформація Символи:, Одиниці вимірювання ...
Температура
Thumb
Теплова вібрація сегмента альфа-спіраль білка. Амплітуда коливань збільшується із зростанням температури
Символи:
Одиниці вимірювання
SI кельвін (К)
Розмірність: Θ
Інші величини: °C, °F, °R, °Rø, °Ré, °N, °D, °W

 Температура у Вікісховищі 
Закрити

Визначення температури

Узагальнити
Перспектива
Thumb
Температура, виміряна рідинним термометром
Thumb
Температура за шкалою термометра на базі біметалевої пластини
Thumb
Температура (середній рядок) на термометрі з цифровою шкалою
Thumb
Температура на шкалі пірометра

Існує декілька визначень температури.

  1. На побутовому рівні температура пов'язана із суб'єктивним сприйняттям «тепла» і «холоду». Наші відчуття дозволяють розрізняти якісні градації нагріву тіл: теплий, холодний, гарячий. Але придатна для науки кількісна міра ступеня нагріву не може бути виміряна за допомогою відчуттів. Простий експеримент підтверджує це. Якщо потримати одну руку у холодній воді, а другу — у гарячій, а потім обидві помістити у теплу воду, то рука, яка була у холодній воді буде відчувати тепло, а рука, що була у гарячій — холод. Крім того, за допомогою відчуттів ми можемо оцінювати ступінь нагріву чи охолодження у дуже вузькому діапазоні. Таким чином, необхідним є пов'язати кількісне вимірювання температури і побудову температурної шкали з об'єктивними фізичними явищами.
  2. У класичній термодинаміці поняття емпіричної температури тісно пов'язане з рівновагою ізольованих систем, а саме — з тепловою рівновагою. Якщо дві ізольовані від навколишнього середовища рівноважні системи ; і ; ввести у тепловий контакт, який забезпечує особливий вид передачі енергії — прямий теплообмін між двома системами, то стан цих систем почне змінюватись до тих пір, поки між ними не настане стан рівноваги. Цей вид рівноваги, що не пов'язаний з масообміном, зміною тиску, концентрації або з хімічними перетвореннями, називається тепловою або термічною рівновагою. Теплова рівновага — це такий стан, який допускає можливість здійснення оборотного теплообміну між системами необмежено довго без зміни їх стану.

Вихідне визначення температури формулюється так:

Температура є єдиною функцією стану термодинамічної системи, яка вказує на напрям самовільного теплообміну між системами.

Звідси випливає, по-перше, що вищезгадані системи ; і , які перебувають між собою у стані теплової рівноваги мають однакову температуру у будь-якій температурній шкалі, а, по друге, — дві системи, які не знаходяться одна з одною у тепловому контакті, але кожна з них нарізно знаходиться у тепловій рівновазі з третьою системою (вимірювальний прилад) мають однакову температуру[2][3]. Останнє твердження має назву властивість транзитивності термодинамічної рівноваги[4]. Деякі автори (Р. Фаулер і Е. Гуггенгейм[5]) вважають цю властивість, яка почерпнута з загальнолюдського досвіду, нульовим законом термодинаміки.

Безпосереднє вимірювання температури є неможливим. У приладах для вимірювання температури (термометрах) використовують термометричне тіло, яке вводять у тепловий контакт з тілом, температуру якого потрібно виміряти. Фізична величина, яка знаходиться у функціональній залежності від температури і є її індикатором, має назву термометрична величина. Наприклад, у рідинних термометрах термометричним тілом є рідина у резервуарі термометра, а термометричною величиною — об'єм рідини. У термометрах опору термометричним тілом є металеві дроти або напівпровідники, а термометричною величиною — їх електричні опори. Докладніше: Термометрія

Температура, що вимірюється термометрами називається емпіричною температурою. Строго кажучи, покази термометрів з різними термометричними тілами різняться між собою і збігаються лише в реперних точках. Наступним недоліком емпіричної температури є відсутність безперервної термометричної шкали, тому що жодне термометричне тіло неспроможне виконувати своє призначення у всьому діапазоні можливих температур.

Другий закон термодинаміки, а саме його частина — принцип існування абсолютної температури і ентропії (), усуває цей недолік і дозволяє встановити термодинамічну шкалу, незалежну від термометричного тіла. Температура, виміряна за цією шкалою, є абсолютною або термодинамічною температурою.

3. Поряд з термодинамічним, в інших розділах фізики можуть вводитись й інші визначення температури. На мікроскопічному рівні температура пов'язана з тепловим рухом атомів та молекул, із яких складаються фізичні тіла, а саме — з їх середньою кінетичною енергією. Тому у молекулярно-кінетичній теорії справедливим буде таке визначення:

Температу́ра скалярна фізична величина, яка характеризує середню кінетичну енергію частинок макроскопічної системи, що припадає на один ступінь вільності.

За словами П. Л. Капиці:

…мірилом температури є не сам рух, а хаотичність цього руху. Хаотичність стану тіла визначає його температурний стан, і ця ідея (яку вперше розробив Людвіг Больцман), що певний температурний стан тіла зовсім не визначається енергією руху, але є хаотичністю цього руху, і це те нове поняття в описі температурних явищ, яким ми повинні користуватися…

Капица П. Л. Свойства жидкого гелия // Природа.  1997. № 12.

За ДСТУ 3518-97[6]: Температура — фізична величина, що є мірою інтенсивності теплового руху атомів і молекул.

Температуру, що входить як параметр у розподіл Больцмана, часто називають температурою збудження, у розподіл Максвелла — кінетичною температурою, у формулу Саха — іонізаційною температурою, у закон Стефана — Больцмана — радіаційною температурою. Для системи, що перебуває у термодинамічній рівновазі, усі ці параметри рівні між собою, і їх називають просто температурою системи[7].

Температурні шкали

Для однозначного визначення температури різними методами й на основі зміни різних властивостей термометричних тіл, термометри необхідно градуювати. Для цього використовуються температурні шкали. В основі температурних шкал — особливі реперні точки, яким присвоюється певне значення температури. Історично склалися різні температурні шкали, що використовують різні реперні точки, які пов'язані з певними фізичними явищами, що відбуваються за певних температур.

У Міжнародній системі одиниць (SI) одиниця вимірювання термодинамічної температури належить до семи основних одиниць і виражається у кельвінах. До одиниць SI, які мають спеціальну назву, належить градус Цельсія[8] для вимірювання температури за шкалою Цельсія. На практиці часто застосовують градуси Цельсія через історичну прив'язку до важливих характеристик води — температури танення льоду (0 °C) і температури кипіння (100 °C). Це зручно, оскільки більшість кліматичних процесів, процесів у живій природі, тощо пов'язані з цим діапазоном. Зміна температури на один градус Цельсія тотожна зміні температури на один Кельвін. Тому після введення в 1967 році нового визначення Кельвіна, температура кипіння води перестала грати роль незмінної реперної точки і, як показують точні вимірювання, вона вже не дорівнює 100 °C, а близька до 99,975 °C[9].

У Міжнародній системі одиниць (SI) для вимірювання температури застосовується шкала Кельвіна і символ (за цієї умови знак градуса ° відсутній). Широкий вжиток також мають системи Цельсія і Фаренгейта.

Шкала Кельвін

0 градусів відповідають абсолютному нулю, тобто повній відсутності руху молекул. Інша реперна точка потрійна точка води. Її температура 273,16 К вибрана так, щоб один кельвін відповідав одному градусу за шкалою Цельсія. Температура за шкалою Кельвіна називається абсолютною температурою. Вона позначається великою латинською літерою T. Шкала Кельвіна використовується у фізиці. Її називають термодинамічною шкалою, оскільки вона найкраще визначена. Наприклад, problems точка води на відміну від температури замерзання, не залежить від тиску.

Шкала Цельсія

0 °C відповідає температура замерзання води, 100 °C — температура кипіння води (під дією тиску в 1 атмосферу). Здебільшого температура за шкалою Цельсія позначається маленькою латинською літерою t.

Шкала Фаренгейта

Замерзания і кипіння води розділяють 180 °F. Один градус за Фаренгейтом дорівнює 5/9 кельвіна або градуса Цельсія. Вода замерзає за 32 °F, а кипить за 212 °F.

Існували також інші системи вимірювання температури, які тепер вийшли з ужитку:

Формули для визначення відповідності між основними шкалами:

За Цельсіємза Кельвіном за Фаренгейтом:

За Цельсіємза Реомюромза Ранкіном:

За Кельвіномза Цельсієм:

За Кельвіномза Фаренгейтом:

За Цельсіємза Фаренгейтом:

Зіставлення температурних шкал

Більше інформації Явище, за Кельвіном ...
Явище за Кельвіном за Цельсієм за Фаренгейтом за Ранкіном за Делілем за Ньютоном за Реомюром за Ромером
Абсолютний нуль 0 −273,15 −459,67 0 559,725 −90,14 −218,52 −135,90
Суміш льоду і солі (за Фаренгейтом) 255,37 −17,78 0 459,67 176,67 −5,87 −14,22 −1,83
Замерзання води (за нормальних умов) 273,15 0 32 491,67 150 0 0 7,5
Середня температура людського тіла 310,0 36,85 98,2 ¹ 557,9 94,5 12,21 29,6 26,925
Кипіння води (за нормальних умов) 373,15 100 212 671,67 0 33 80 60
Плавлення титану 1941 1668 3034 3494 −2352 550 1334 883
Поверхня Сонця 5800 5526 9980 10440 −8140 1823 4421 2909
Закрити

¹ За шкалою Фаренгейта традиційно нормальною температурою людського тіла вважається 98,6 °F, а отже термометри враховують цю неточність.

² Деякі значення були заокруглені.

Історія

Слово «температура» виникло в часи, коли люди вважали, що у більш нагрітих тілах міститься більша кількість особливої речовини теплецю, ніж в менш нагрітих. Тому температура сприймалась як міцність суміші тіла і теплецю. Внаслідок цього одиниці вимірювання міцності спиртних напоїв та температури називаються однаково — градусами.

Цікаві факти

  • Найвища температура, досягнута за участі людини, ~ 10 трлн К (що є порівнянним з температурою Всесвіту у перші секунди його існування) була досягнута у 2010 році під час зіткнення іонів свинцю, прискорених до світлових швидкостей. Експеримент було проведено на Великому адронному колайдері[10].
  • Найвища теоретично можлива температура планківська температура. Вища температура за сучасними фізичними уявленнями не може існувати, оскільки надання додаткової енергії системі, нагрітої до такої температури, не збільшує швидкості частинок, а лише породжує у зіткненнях нові частки, за цієї обставини кількість частинок у системі зростає й зростає маса системи. Вище за планківську температуру гравітаційні сили між частинками стають порівняними із силами решти фундаментальних взаємодій. Можна вважати, що це температура «кипіння» фізичного вакууму. Вона приблизно дорівнює 1,41679(11)× 1032 K (~ 142 нонільйони K).
  • Поверхня Сонця має температуру близько 6000 K, а сонячне ядро — близько 15 000 000 K.
  • Найнижча температура, яка досягнута людиною, була отримана у 1995 році Еріком Корнеллом та Карлом Віманом із США під час охолодження атомів рубідію[11][12]. Вона перевищувала абсолютний нуль менше ніж на 1/170 мільярдну частку кельвіна (5,9× 10−12  K).
  • Рекордно низьку температуру на поверхні Землі −89,2 °С було зареєстровано на радянській внутрішньоконтинентальній науковій станції «Восток», Антарктида (висота розташування 3488 м над рівнем моря) 21 червня 1983 року[13][14].
  • 9 грудня 2013 року на конференції Американського геофізичного союзу група американських дослідників повідомила про те, що 10 серпня 2010 року температура повітря в одній з точок Антарктиди опускалась до −135,8 °F (−93,2° С). Цю інформацію було отримано за результатами аналізу супутникових даних НАСА[15]. На думку автора повідомлення Т. Скамбоса (англ. Ted Scambos) отримане значення не підлягає реєстрації як рекордне, оскільки визначене у результаті супутникових вимірювань, а не за допомогою термометра[16].
  • Рекордно високу температуру повітря поблизу земної поверхні +56,7 °C було зареєстровано 10 липня 1913 року на ранчо Грінленд у долині Смерті (штат Каліфорнія, США). За іншими даними рекорд максимальної температури повітря на Землі в тіні досягнув позначки +72 °С в Іранській пустелі Деште-Лут в 2005 році[17][18].
  • Насіння наземних рослин зберігають здатність проростати навіть після охолодження до −269 °C (наприклад мохи, папоротеподібні).

Див. також

Примітки

Джерела

Посилання

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.