Loading AI tools
хімічний елемент, з атомним номером 74 З Вікіпедії, вільної енциклопедії
Вольфра́м (англ. tungsten, нім. Wolfram) — хімічний елемент. Символ W, ат. н. 74, ат. маса — 183,85. Сріблясто-білий метал. Має найвищу серед усіх металів температуру плавлення і кипіння (серед інших елементів вищу температуру плавлення має лише вуглець). Належить до групи перехідних металів. Один з найважчих металів — його густина 19,25 г/см3 (на 70 % більше ніж в свинцю). Сплави вольфраму мають високу твердість, зносостійкість, жароміцність.
Металічний вольфрам у звичайних умовах хімічно стійкий. З киснем починає взаємодіяти при температурі вище 400 °C. Протистоїть дії води, але при температурі червоного розжарювання легко окиснюється водяною парою. Найбільш характерними й стійкими є сполуки вольфраму зі ступенем окиснення +6. Найважливіші з них: триоксид вольфраму[en] WO3, вольфрамова кислота[en] H2WO4 і її солі — вольфрамати.
Назва Wolframium перейшла на елемент з мінералу вольфраміту (нині — важливої вольфрамової руди). Ще у XVI ст. шахтарі з Рудних гір Саксонії повідомили про мінерал, що часто супроводжував олов'яні руди, і дуже заважав виплавці олова. Якщо мінерал був наявний у розплаві, то частина олова випадала у тугоплавкий осад, а частина — губилася в шлаковій піні, що з'являлася на поверхні. Шахтарі називали цей мінерал «вовчок» через чорний колір і структуру, що нагадувала шерсть, тому він отримав назву «Wolf Rahm» — «вовча піна». Ґеорґіус Аґрікола 1546 року описав мінерал і дав йому латинську назву lupi spuma, що є калькою німецької.[1]. Про вольфраміт казали, що він «пожирає олово як вовк вівцю». Англійська й французька назва вольфраму, tungsten походить від однойменного мінералу (зараз він називається шеєліт), і перекладається як «важкий камінь». Ще до середини ХХ століття вольфрам іноді позначали як Tu.
У 1781 році шведський хімік Карл Вільгельм Шеєле опублікував результи своїх експериментів з тунгстеном (шеєлітом), за допомогою яких він показав, що цей мінерал складається з вапна і невідомої раніше кислоти, яку він назвав тунгстеновою (сучасна назва — вольфрамова кислота). Торберн Бергман запропонував відновити з цієї кислоти метал, використовуючи вугільну кислоту[1].
1783 року іспанські хіміки та металурги Фаусто та Хуан Хосе Ельгуяри (ісп. Juan José Elhuyar), що працювали з професором Бергманом, повернулися до Іспанії, і виявили, що саксонський вольфраміт містить марганцеві й залізні солі знайденої Шеєле кислоти. Того ж року, брати отримали з вольфраміту чистий метал, який назвали вольфрамом[1].
Цікаво, що одним з перших дослідників вольфраму був Рудольф Еріх Распе (більш знаний як автор «Пригод барона Мюнхгаузена»), який одразу відзначив його надзвичайну твердість і міцність (на відміну від братів Ельгуляр, які писали, що поки що не бачать застосувань нововідкритому металу). Існують гіпотези, згідно яких саме Распе належав знайдений у 2004 році в Корнуоллі шматок вольфраму, що, можливо, був отриманий ним навіть раніше за братів Ельгуяр[2].
У 1847 р. Роберт Оксленд отримав патент на метод отримання вольфраму, що був достатньо дешевим і міг використовуватися в промислових масштабах, що відкрило шлях до його широкого використання[1].
У 1858 р. були запатентовані вольфрамові сталі, а до ХХ ст. такі сталі використовували у різноманітних галузях завдяки своїй високій міцності, твердості, тугоплавкості й червоностійкості[1].
У 1904 р. були запатентовані вольфрамові лампи розжарення, що швидко витіснили менш ефективні лампи з вугільними нитками[1]. Протягом століття такі лампи були найпопулярнішими джерелами освітлення, і, хоча в новому тисячолітті вони швидко витісняються LED-лампами, навіть у розвинених країнах чверть усіх ламп — лампи розжарення[3].
У 1923 р. було отримано перший патент на композитний матеріал на основі карбіду вольфраму. Зараз матеріали цього типу мають попит у багатьох галузях завдяки своїм фізичним властивостям. Карбід вольфраму є одним з найтвердіших відомих людству матеріалів[4].
Під час Першої, а ще більше — під час Другої світових війн, стала зрозумілою важливість вольфраму для виробництва броні й артилерії. 1944 року США наклали економічні санкції на Португалію (що була нейтральною) за продаж вольфраму у Третій Рейх[5].
Як й інші елементи, важчі заліза, вольфрам утворюється у зорях, у реакціях нуклеосинтезу, які поглинають енергію. Такі реакції відбуваються лише у досить масивних зорях (більше, ніж 8M☉) наприкінці їхнього існування. Наразі вважається, що приблизно половина вольфраму була утворена в результаті s-процесу, тобто повільного послідовного захоплення ядрами нейтронів, яке може тривати тисячі років, а друга половина — в результаті швидкого r-процесу, що відбувається за умови високої концентрації вільних нейтронів, яка є можливою під час високоенергетичних, але короткочасних процесів, таких як вибухи наднових і злиття нейтронних зір.[6]
Вольфрам мало розповсюджений в природі. Його поширеність у Всесвіті становить лише 5×10-8 %, однак вміст у земній корі на три порядки більший — 1,1×10-4 %[7], оскільки вольфрам належить до літофільних елементів, які концентруються в силікатах.
Прояви самородного вольфраму є дуже рідкісними (перші знахідки описані наприкінці 1990-х років)[8]. Утворює власні мінерали. Вольфрамати (Са, Fe, Mn, іноді Pb, Zn), оксиди (WO3, H2WO4) (рідко), та сульфіди (WS2) (ще рідше). Також W входить у вигляді ізоморфної домішки в інші мінерали, переважно в мінерали Мо та Ti. Також зустрічається у деяких силікатах (слюда, польові шпати). У природних мінеральних парагенезисах W часто асоціює з Si, Мо, Sn, Be, Та, F, рідше — з Au, Sb, Hg.
Найважливішими мінералами вольфраму є вольфраміт — твердий розчин вольфраматів заліза й марганцю (Fe, Mn)WO4 (виділяють його різновиди — ферберит, у якому переважає залізо і гюбнерит, у якому переважає марганець) та шеєліт — вольфрамат кальцію CaWO4, які можуть утворюватися і нагромаджуватися до рівня промислових концентрацій у скарновому, ґрейзеновому і гідротермальному процесах. Вміст W у цих мінералах може досягати 12 %.
Усього відомо близько 15 мінералів W. Серед них:
Вміст вольфраму у промислових родовищах становить 0,3–1 % WO3.[9]
Процес отримання вольфраму проходить через стадію виділення триоксиду WO3 з рудних концентратів та подальшому відновленні до металевого порошку воднем при температурі близько 700 °C. Через високу температуру плавлення вольфраму для отримання компактної форми використовують методи порошкової металургії: отриманий порошок пресують, спікають в атмосфері водню при температурі 1200–1300 °C, потім пропускають через нього електричний струм. Метал нагрівається до 3000 °C, при цьому відбувається спікання в монолітний матеріал. Для подальшої очистки та отримання монокристалічної форми використовують зонне плавлення.
На 2018 рік, розвідані запаси вольфраму складають 3 200 000 тонн, більше половини з яких припадає на Китай. В п'ятірку країн з найбільшими запасами входять Росія (160 тис. тонн), В'єтнам (95 тис. тонн), Монголія (63 тис. тонн) та Іспанія (54 тис. тонн). 2017 року у світі було добуто близько 95 000 тонн вольфраму, з яких 79 000 було видобуто в Китаї, 7200 — у В'єтнамі, 3100 — у Росії, 1100 — у Болівії, 1100 — у Великій Британії.[10]
В Україні вольфрам наявний в межах Селищанського рудоносного поля, а також у кількох рудопроявах Східного Приазов'я, проте через низьку концентрацію видобуток наразі не є комерційно привабливим[11][12].
Природний вольфрам складається з п'яти ізотопів (180W, 182W, 183W, 184W, 186W). Штучно створені та ідентифіковані є ще 27 радіонуклідів. У 2003 відкрита надзвичайно слабка радіоактивність природного вольфраму (приблизно два розпади на грам елемента за рік), зумовлена α-активністю 180W, який має період напіврозпаду 1,8×1018 років.
За даними 2010 р., понад половину усього видобутого в світі вольфраму використовують для виробництва матеріалів на основі карбіду вольфраму (таких як побідит). У Європі й США з цією метою використовують близько 70 % вольфраму[13]. До чверті вольфраму використовують для легування сталі. На третьому місці — вироби вольфрамового прокату, наприклад, нитки для ламп розжарювання та кінескопів, неплавкі електроди[en], тощо.
За шкалою Мооса твердість карбіду вольфраму — 9,5 (ненабагато менша за алмаз). Карбід вольфраму виготовляють, запікаючи сажу й порошок вольфраму при температурі 1100–1300 °C протягом 1–2 годин у водневому середовищі. Отриману сполуку також подрібнюють. Для зв'язності, порошок карбіду вольфраму часто заливають металом, наприклад, кобальтом[14].
Матеріали на основі карбіду вольфраму використовують для виготовлення різальних інструментів, бурових установок, свердел, кульок для кулькових ручок[15], бронебійних осердь, а також для ювелірних прикрас.
Можна виділити кілька важливих класів вольфрамових сталей:
При температурі плавлення вольфраму деякі метали вже починають випаровуватись, тому для виготовлення таких сплавів застосовують методи порошкової металургії.
Вольфрам не відіграє значної біологічної ролі. У деяких архей і бактерій є ферменти, які містять вольфрам у своєму активному центрі. Існують облігатно-залежні від вольфраму форми архей-гіпертермофілів, що живуть навколо глибоководних гідротермальних джерел. Наявність вольфраму в складі ферментів може розглядатися як фізіологічний релікт раннього архея — існують припущення, що вольфрам грав роль на ранніх етапах виникнення життя на Землі.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.