Loading AI tools
tıbbi görüntüleme tekniği Vikipedi'den, özgür ansiklopediden
Manyetik rezonans görüntüleme (İngilizce: Magnetic Resonance Imaging MRI), nükleer manyetik rezonans görüntüleme veya manyetik rezonans tomografi, canlıların iç yapısını görüntüleme amacıyla daha çok tıpta kullanılan bir yöntemdir.[1] Yüksek düzeyde manyetizmayla canlı doku, yansıtma yöntemiyle görüntülenir. Farklı özelliklerinden dolayı hastalıkların tespitinde bilgisayarlı tomografiden de destek alınabilir.
Manyetik rezonans görüntüleme | |
---|---|
Diğer adları | Nükleer manyetik rezonans görüntüleme (NMRI), manyetik rezonans tomografisi (MRT) |
ICD-9-CM | 88.91 |
MeSH | D008279 |
MedlinePlus | 003335 |
Vikiveri öğesi |
MRI, X ışınlarını veya iyonlaştırıcı radyasyonun kullanımını içermez; bu, onu bilgisayarlı tomografi (CT) ve pozitron emisyon tomografisi (PET) taramalarından ayırır. MRI, NMR spektroskopisi gibi diğer NMR uygulamalarında görüntüleme için de kullanılabilen nükleer manyetik rezonansın (NMR) tıbbi bir uygulamasıdır.[2]
MRI başlangıçta NMRI (nükleer manyetik rezonans görüntüleme) olarak adlandırıldı, ancak olumsuz ilişkileri önlemek için "nükleer" terimi kaldırıldı.[3] Belirli atom çekirdekleri, harici bir manyetik alana yerleştirildiğinde radyo frekansı (RF) enerjisini emebilir; sonuçta ortaya çıkan dönüş polarizasyonu, bir radyo frekansı bobininde bir RF sinyalini indükleyebilir ve böylece tespit edilebilir.[4]
Klinik ve araştırma MRI'larında hidrojen atomları çoğunlukla incelenen nesneye yakın antenler tarafından tespit edilen makroskobik bir polarizasyon oluşturmak için kullanılır.[4] Hidrojen atomları insanlarda ve diğer biyolojik organizmalarda, özellikle su ve yağda doğal olarak bol miktarda bulunur. Bu nedenle çoğu MRI taraması esasen vücuttaki su ve yağın yerini haritalandırır. Radyo dalgalarının darbeleri nükleer dönüş enerjisi geçişini harekete geçirir ve manyetik alan gradyanları boşluktaki kutuplaşmayı yerelleştirir. Darbe dizisinin parametreleri değiştirilerek, dokular arasında, içindeki hidrojen atomlarının gevşeme özelliklerine dayalı olarak farklı zıtlıklar oluşturulabilir.
Genel anlamda MR diye bilinen bu işlem, aslında nükleer manyetik rezonans görüntülemedir. Dokudaki hidrojen atomlarının yoğunluklarına ve hareketlerine göre görüntü oluşturur. MR'da radyasyon kullanılmaz, onun yerine manyetik alanla vücuttaki hidrojen atomlarının çekirdeklerindeki proton uyarılır.[5] Alıcılara ulaşan sinyaller bilgisayar analizleriyle siyah beyaz görüntülere (Perfüzyon görüntülemelerde sonuçlar renklendirilebilir) dönüştürülür. Bu amaçla kullanılan manyetik alan 1 - 1,5 Tesla aralığındadır. Bir kıyaslama yapmak gerekirse, dünyanın manyetik alanı (pusulaların iğnesini kuzeye çeviren manyetik alan) 0,5 Gauss düzeyindedir. 1 Tesla, 10.000 Gauss'a eşittir. Dolayısıyla MR cihazında dünyanın manyetik alan gücünün yaklaşık 25 bin katı bir manyetik alan kullanılır. Bu çok güçlü manyetik alan kontrol altında çalışır. Görüntülerin hepsi dijital ortamda oluşur ve diğer görüntüleme metotlarından çok farklıdır.[6]
Günümüzde MR özellikle yumuşak dokuları görüntülemede kullanılır. Merkezi sinir sistemi (beyin ve omurilik) hastalıklarının teşhisinde, sporcu yaralanmalarında, kas iskelet sistemi, özellikle menisküs, bel fıtığı gibi rahatsızlıkların tespitinin yanı sıra her türlü nörolojik hastalıkların değerlendirmesinde sıkça kullanılmaktadır.[7]
MR görüntülemenin, canlı organizma üzerinde şu ana kadar kanıtlanmış herhangi bir zararı yoktur. Buna gebeler de dahildir; ama yine de organ gelişiminin gerçekleştiği ilk üç ayda MR çekimi önerilmez.[8] Metal etkileşimi olan, vücudunda mıknatıs ya da metal protez taşıyan, kalp pili kullanan, göz içinde yabancı cisim bulunan, ateşli silah yaralanması geçirmiş olan (çoğu uyumsuz metaldir) ya da kalıcı dövme sahibi kişilerin MR cihazına girmeleri sakıncalı kabul edilir (hayati tehlike doğurabilir).
Manyetik rezonans görüntüleme süresi, inceleme yapılan bölgeye, bölge sayısına, konulan ön tanıya göre değişiklik gösterip 15 dk. ile 75 dk. arasında sürebilir. Ayrıca gerek görülürse inceleme esnasında IV (damar içi) yoluyla kontrast madde kullanılarak kontrastlı çekim yapılır.[9]
Manyetik rezonans görüntülemenin Fonksiyonel MR, Difüzyon-Perfüzyon Ağırlıklı MR, MR Spektroskopi gibi farklı çeşitleri vardır.
Çoğu tıbbi uygulamada, dokularda bulunan ve yalnızca bir protondan oluşan hidrojen çekirdekleri, bu çekirdeklerin belirli bir bölgedeki yoğunluğuna göre vücudun bir görüntüsünü oluşturmak üzere işlenen bir sinyal oluşturur. Protonların bağlı oldukları diğer atomlardan gelen alanlardan etkilendiği göz önüne alındığında, belirli bileşiklerdeki tepkileri hidrojenden ayırmak mümkündür. Bir çalışma gerçekleştirmek için kişi, görüntülenecek alanın çevresinde güçlü bir manyetik alan oluşturan MRI tarayıcısının içine yerleştirilir. İlk olarak, salınımlı bir manyetik alandan gelen enerji hastaya uygun rezonans frekansında geçici olarak uygulanır. X ve Y gradyan bobinleriyle tarama yapmak, hastanın seçilen bölgesinin enerjinin emilmesi için gereken manyetik alanı tam olarak deneyimlemesine neden olur. Atomlar bir RF darbesi ile uyarılır ve ortaya çıkan sinyal, bir alıcı bobin tarafından ölçülür. RF sinyali, gradyan bobinleri kullanılarak yerel manyetik alanın değiştirilmesinin neden olduğu RF seviyesindeki ve fazdaki değişikliklere bakarak konum bilgisini çıkarmak için işlenebilir. Bu bobinler, hareketli bir hat taraması gerçekleştirmek için uyarım ve yanıt sırasında hızlı bir şekilde değiştirildiğinden, manyetik daralma nedeniyle sargılar hafifçe hareket ettiğinden, MRI taramasının karakteristik tekrarlayan gürültüsünü yaratırlar. Farklı dokular arasındaki zıtlık, uyarılmış atomların denge durumuna dönme hızıyla belirlenir. Görüntünün daha net hale getirilmesi için kişiye dışsal kontrast maddeler verilebilir.[10]
Bir MRI tarayıcısının ana bileşenleri, numuneyi polarize eden ana mıknatıs, ana manyetik alanın homojenliğindeki değişiklikleri düzeltmek için ayar bobinleri, taranacak bölgenin lokalizasyonu için kullanılan gradyan sistemi ve numuneyi uyaran ve ortaya çıkan NMR sinyalini tespit eden RF sistemidir. Tüm sistem bir veya daha fazla bilgisayar tarafından kontrol edilir.
MRI, tarama hacmi boyunca milyonda birkaç parçaya kadar hem güçlü hem de tek biçimli bir manyetik alan gerektirir. Mıknatısın alan gücü Tesla cinsinden ölçülür ve sistemlerin çoğu 1,5 T'de çalışırken, ticari sistemler 0,2 ile 7 T arasında mevcuttur. Araştırma uygulamalarına yönelik tüm vücut MRI sistemleri örneğin 9,4T,[11][12] 10,5T,[13] 11,7T'lada çalışır.[14]
Daha da yüksek alanlı tüm vücut MRI sistemleri; 14 T ve ötesi kavramsal teklifte[15] veya mühendislik tasarımındadır.[16]
Klinik mıknatısların çoğu, kendilerini düşük sıcaklıklarda tutmak için sıvı helyum gerektiren süper iletken mıknatıslardır.
Klostrofobik hastalar için "açık" MRI tarayıcılarında sıklıkla kullanılan kalıcı mıknatıslarla daha düşük alan güçleri elde edilebilir.[17] Daha düşük alan güçleri, 2020 yılında FDA tarafından onaylanan taşınabilir bir MRI tarayıcısında da kullanılmaktadır.[18] Son zamanlarda MRI ultra düşük alanlarda, yani mikrotesla ila militesla aralığında, yeterli sinyal kalitesinin prepolarizasyon (10–100 mT civarında) ile ve yaklaşık 100 mikrotesla'da son derece hassas süper iletken kuantum girişim cihazlarıyla (SQUIDler) Larmor presesyon alanlarının ölçülmesiyle mümkün olduğu gösterilmiştir.[19][20][21]
Her doku, T1 (spin-kafes; yani statik manyetik alanla aynı yönde mıknatıslanma) ve T2'nin (spin-spin; statik manyetik alana çapraz) bağımsız gevşeme süreçleriyle uyarıldıktan sonra denge durumuna geri döner.
T1 ağırlıklı bir görüntü oluşturmak için, tekrarlama süresini (TR) değiştirerek MR sinyalini ölçmeden önce mıknatıslanmanın düzelmesine izin verilir. Bu görüntü ağırlıklandırma, serebral korteksin değerlendirilmesi, yağ dokusunun tanımlanması, fokal karaciğer lezyonlarının karakterize edilmesi ve genel olarak morfolojik bilgilerin elde edilmesinin yanı sıra kontrast sonrası görüntüleme için faydalıdır.
T2 ağırlıklı görüntü oluşturmak için, yankı süresini (TE) değiştirerek MR sinyalini ölçmeden önce mıknatıslanmanın azalmasına izin verilir. Bu görüntü ağırlıklandırma, ödem ve iltihaplanmayı belirlemek, beyaz cevher lezyonlarını ortaya çıkarmak ve prostat ve uterustaki bölgesel anatomiyi değerlendirmek için faydalıdır.
MRI taramalarından elde edilen bilgiler, salınımlı bir manyetik alan tarafından (örnek boyunca radyofrekans darbeleri şeklinde) bozulan nükleer dönüşlerin gevşeme hızındaki farklılıklara dayanan görüntü kontrastları biçiminde gelir.[22] Gevşeme oranları, bir sinyalin boyuna veya enine düzlemden denge durumuna geri dönmesi için geçen sürenin ölçüsüdür.
Mıknatıslanma, B0 manyetik alanının varlığında z ekseninde oluşur, öyle ki numunedeki manyetik dipoller ortalama olarak z-ekseni toplamı ile toplam mıknatıslanma Mz ile hizalanır. z boyunca bu mıknatıslanma denge mıknatıslanması olarak tanımlanır; mıknatıslanma bir numunedeki tüm manyetik dipollerin toplamı olarak tanımlanır. Denge mıknatıslanmasının ardından, 90°'lik bir radyofrekans (RF) darbesi, xy- düzlemindeki mıknatıslanma vektörünün yönünü çevirir ve ardından kapatılır. Ancak başlangıçtaki B0 manyetik alanı hala uygulanmaktadır. Böylece, spin mıknatıslanma vektörü yavaş yavaş xy düzleminden denge durumuna geri döner. Mıknatıslanma vektörünün denge değerine (Mz) dönmesi için geçen süre, uzunlamasına gevşeme süresi (T1) olarak adlandırılır.[23] Daha sonra bunun gerçekleşme hızı, olacak şekilde gevşeme süresinin tersidir. Benzer şekilde Mxy'nin sıfıra dönmesi için geçen süre oranındaki T2 dir.[24]
Zamanın bir fonksiyonu olarak mıknatıslanma Bloch denklemleri ile tanımlanır.
T1 ve T2 değerleri değerleri numunenin kimyasal ortamına bağlıdır, dolayısıyla MRI'da kullanılabilirler. Yumuşak doku ve kas dokusu farklı hızlarda gevşer ve tipik bir taramada görüntü zıtlığı elde edilir.
Sinyal | T1 ağırlıklı | T2 ağırlıklı |
---|---|---|
Yüksek |
|
|
Orta seviye | Boz madde beyaz maddeden daha koyudur[27] | Beyaz madde boz maddeden daha koyudur[27] |
Az |
|
MRI'ın tıbbi teşhiste geniş uygulama alanı vardır ve dünya çapında 25.000'den fazla tarayıcının kullanıldığı tahmin edilmektedir.[28] MR birçok uzmanlık dalında tanı ve tedaviyi etkiler, ancak bazı durumlarda sağlık sonuçlarının iyileşmesi üzerindeki etkisi tartışmalıdır.[29][30]
MRI, rektal ve prostat kanserinin ameliyat öncesi evrelemesinde tercih edilen araştırmadır ve diğer tümörlerin tanısında, evrelemesinde ve takibinde[31] ve ayrıca biyobankacılıkta numune alınacak doku alanlarının belirlenmesinde rol oynar.[32][33]
MRI, beyinsapı ve beyincik içeren posterior kranyal fossanın daha iyi görüntülenmesini sağladığı için nörolojik kanserler için BT'ye göre tercih edilen araştırma aracıdır. Gri ve beyaz madde arasında sağlanan kontrast, MRG'yi, demiyelinizan hastalıklar, demans, serebrovasküler hastalıklar, bulaşıcı hastalıklar, Alzheimer hastalığı ve epilepsi dahil olmak üzere merkezi sinir sisteminin birçok durumu için en iyi seçim yapar.[34][35][36] Birçok görüntü milisaniye aralıklarla alındığından, beynin farklı uyaranlara nasıl tepki verdiğini gösterir ve araştırmacıların psikolojik bozukluklardaki hem işlevsel hem de yapısal beyin anormalliklerini incelemesine olanak tanır.[37] MRI aynı zamanda intrakranial tümörlerin, arteriyovenöz malformasyonların ve N-lokalizör olarak bilinen bir cihaz kullanılarak cerrahi olarak tedavi edilebilir diğer durumların tedavisi için rehberli stereotaksik cerrahide ve radyocerrahide de kullanılır.[38][39][40] Sağlık hizmetlerinde yapay zekâyı uygulayan yeni araçlar, gürültü giderme sisteminin uygulanmasıyla nörogörüntülemede daha net görüntü kalitesi ve morfometrik analiz göstermiştir.[41]
Sağlam bir beynin (ölüm sonrası) en yüksek uzaysal çözünürlüğüne ilişkin rekor, Massachusetts Genel Hastanesi'nden 100 mikrondur. Veriler 30 Ekim 2019'da NATURE'da yayınlandı.[42][43]
Kardiyak MR, ekokardiyografi, kardiyak BT ve nükleer tıp gibi diğer görüntüleme tekniklerini tamamlayıcı niteliktedir. Kalbin yapısını ve fonksiyonunu değerlendirmek için kullanılabilir.[44] miyokardiyal iskemi ve canlılığın değerlendirilmesi, kardiyomiyopatiler, miyokardit, aşırı demir yükü, vasküler hastalıklar ve konjenital kalp hastalıkları'nda uygulanır..[45]
Kas-iskelet sisteminde, omurga görüntüleme, eklem hastalıklarının değerlendirilmesi ve yumuşak doku tümörlerinde uygulanır.[46] Ayrıca genetik kas hastalıkları da dahil olmak üzere sistemik kas hastalıklarının tanısal görüntülemesinde MR teknikleri kullanılabilir.[47][48]
Boğaz ve yemek borusunun yutkunma hareketi, görüntülenen omurgada hareket eserlerine neden olabilir. Bu nedenle, boğaz ve yemek borusunun bu bölgesine uygulanan bir doyma darbesi bu eserin önlenmesine yardımcı olabilir. Kalbin pompalanmasına bağlı olarak ortaya çıkan hareket eseri, MR darbesinin kalp döngülerine göre zamanlanmasıyla azaltılabilir.[49] Kan damarlarının akış eserleri, ilgilenilen bölgenin üstüne ve altına doygunluk darbeleri uygulanarak azaltılabilir.[50]
Hepatobiliyer MRG karaciğer, pankreas ve safra kanallarındaki lezyonları tespit etmek ve nitelemek için kullanılır. Karaciğerin fokal veya yaygın bozuklukları, difüzyon ağırlıklı, zıt fazlı görüntüleme ve dinamik kontrast iyileştirme sekansları kullanılarak değerlendirilebilir. Hücre dışı kontrast maddeler karaciğer MRG'de yaygın olarak kullanılmaktadır ve daha yeni hepatobiliyer kontrast maddeler de fonksiyonel biliyer görüntüleme yapma fırsatı sağlamaktadır. Safra kanallarının anatomik görüntülemesi, manyetik rezonans kolanjiyopankreatografide (MRCP) yoğun T2 ağırlıklı sekans kullanılarak elde edilir. Sekretin uygulamasının ardından pankreasın fonksiyonel görüntülemesi gerçekleştirilir. MR enterografi, inflamatuar bağırsak hastalığı ve ince bağırsak tümörlerinin invaziv olmayan değerlendirmesini sağlar. MR-kolonografi, kolorektal kanser riski yüksek olan hastalarda büyük poliplerin tespitinde rol oynayabilir.[51][52][53][54]
Manyetik rezonans anjiyografi (MRA), stenoz (anormal daralma) veya anevrizma (damar duvarı dilatasyonu, yırtılma riski) açısından değerlendirmek üzere arterlerin resimlerini oluşturur. MRA sıklıkla boyun ve beyindeki arterleri, torasik ve abdominal aortu, böbrek arterleri ve bacakları değerlendirmek için kullanılır. Resimleri oluşturmak için paramanyetik bir kontrast maddesinin (gadolinyum) uygulanması veya "akışla ilgili geliştirme" (örn. 2D ve 3D tarama süresi dizileri) olarak bilinen bir tekniğin kullanılması gibi çeşitli teknikler kullanılabilir; bir görüntüdeki sinyalin çoğu yakın zamanda bu düzleme taşınan kandan kaynaklanır.[55]
Faz birikimini içeren teknikler (faz kontrast anjiyografi olarak bilinir), akış hızı haritalarını kolay ve doğru bir şekilde oluşturmak için de kullanılabilir. Manyetik rezonans venografi (MRV), damarları görüntülemek için kullanılan benzer bir yöntemdir. Bu yöntemde, sinyal uyarma düzleminin hemen üstündeki düzlemde toplanırken doku artık aşağı yönde uyarılır; böylece uyarılmış düzlemden yakın zamanda hareket eden venöz kan görüntülenir.[56]
Anatomik yapıları veya kan akışını görüntülemeye yönelik MR, dokuların veya kanın değişen özellikleri doğal zıtlıklar sağladığından kontrast maddeleri gerektirmez. Ancak daha özel görüntüleme türleri için eksojen kontrast maddeler intravenöz, oral veya eklem içi olarak verilebilir.[10] Kontrast maddelerin çoğu paramanyetiktir (örneğin: gadolinyum, manganez, europium) ve biriktikleri dokuda T1'i kısaltmak için kullanılır veya süper paramanyetiktir (SPION'lar), sağlıklı dokuda T2 ve T2*'yi kısaltmak için kullanılır ve sinyal yoğunluğunu azaltır (negatif kontrast maddeleri). En sık kullanılan intravenöz kontrast maddeler oldukça paramanyetik olan gadolinyum şetlantlarına dayanır.[57] Genel olarak bu ajanların, X-ışını radyografisi veya BT'de kullanılan iyotlu kontrast ajanlardan daha güvenli olduğu kanıtlanmıştır. Anafilaktoid reaksiyonlar nadirdir ve yakl. %0,03–0,1 arasındadır.[58] Özellikle ilgi çekici olan, normal dozlarda verildiğinde iyotlu ajanlarla karşılaştırıldığında nefrotoksisite insidansının daha düşük olmasıdır; bu, aksi takdirde kontrastlı BT'ye giremeyecek olan böbrek yetmezliği olan hastalar için kontrastlı MRI taramasını bir seçenek haline getirmiştir.[59]
Gadolinyum bazlı kontrast reaktifleri tipik olarak gadolinyum (III)'ün oktadentat kompleksleridir. Kompleks oldukça stabildir (log K > 20), dolayısıyla kullanım sırasında komplekslenmemiş Gd3+ iyonlarının konsantrasyonu toksisite sınırının altında olmalıdır. Metal iyonunun koordinasyon küresinde 9. sırada, reaktif molekülünün yakın çevresindeki su molekülleri ile hızlı bir şekilde yer değiştiren ve manyetik rezonans gevşeme süresini etkileyen bir su molekülü bulunur..[60]
Aralık 2017'de, Amerika Birleşik Devletleri'ndeki Gıda ve İlaç İdaresi (FDA), bir ilaç güvenliği bildiriminde, tüm gadolinyum bazlı kontrast maddelere (GBCA'lar) yeni uyarıların dahil edileceğini duyurdu. FDA ayrıca hasta eğitiminin arttırılması ve gadolinyum kontrast satıcılarının bu ajanların güvenliğini değerlendirmek için ek hayvan ve klinik çalışmalar yapmalarını talep etme çağrısında bulundu.[61] Gadolinyum ajanlarının böbrek yetmezliği olan hastalar için faydalı olduğu kanıtlanmış olsa da, diyaliz gerektiren ciddi böbrek yetmezliği olan hastalarda, nadir fakat ciddi bir hastalık olan nefrojenik sistemik fibrozis riski vardır ve bu, bazı gadolinyum içeren ajanların kullanımına bağlı olabilir. En sık bağlantılı olanı gadodiamiddir, ancak diğer ajanlar da bağlantılıdır.[62]
Nedensel bir bağlantı kesin olarak kurulmamış olsa da, Amerika Birleşik Devletleri'ndeki mevcut kılavuzlar, diyaliz hastalarının yalnızca gerekli olduğunda gadolinyum ajanlarını almaları gerektiğini ve ajanın vücuttan hızla uzaklaştırılması için diyalizin taramadan sonra mümkün olan en kısa sürede yapılması gerektiği yönündedir.[63][64]
Daha fazla gadolinyum içeren ajanın mevcut olduğu Avrupa'da, potansiyel risklere göre ajanların bir sınıflandırması yayınlanmıştır.[65][66] 2008 yılında, Eovist (ABD) veya Primovist (AB) markasıyla gadoxetate adlı yeni bir kontrast maddesi tanısal kullanım için onaylandı: Bu, ikili atılım yolunun teorik faydasına sahiptir.[67]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.