Loading AI tools
จากวิกิพีเดีย สารานุกรมเสรี
สแตติน (อังกฤษ: statins หรือ HMG-CoA reductase inhibitors) เป็นกลุ่มของยาลดไขมันในกระแสเลือด (hypolipidemic agents หรือ lipid lowering agents) มีโครงสร้างเป็นสารประกอบอินทรีย์ที่ได้ทั้งจากการสังเคราะห์และจากธรรมชาติที่มีฤทธิ์ยับยั้งการทำงานของเอนไซม์ 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase) ซึ่งเป็นเอนไซม์ในขั้นกำหนดอัตรา (rate limiting enzyme) ที่ทำหน้าที่เปลี่ยน HMG CoA เป็นสารจำพวกคอเลสเตอรอลในกระแสเลือด[2] ดังนั้น จึงมีการนำยากลุ่มสแตตินนี้มาใช้เป็นยาลดระดับคอเลสเตอรอลในกลุ่มคนที่เสี่ยงต่อการเป็นโรคหัวใจและหลอดเลือด (cardiovascular disease) จากภาวะไขมันสูงกว่าปกติ ทั้งในรูปแบบการใช้สแตตินเพียงชนิดเดียวหรือใช้ร่วมกับยาลดไขมันในกระแสเลือดกลุ่มอื่นๆ
ลิงก์ข้ามภาษาในบทความนี้ มีไว้ให้ผู้อ่านและผู้ร่วมแก้ไขบทความศึกษาเพิ่มเติมโดยสะดวก เนื่องจากวิกิพีเดียภาษาไทยยังไม่มีบทความดังกล่าว กระนั้น ควรรีบสร้างเป็นบทความโดยเร็วที่สุด |
อย่างไรก็ตาม ความเสี่ยงต่อโรคหัวใจและหลอดเลือดที่ลดลงในผู้ที่ใช้สแตตินนั้นไม่ได้เป็นผลมาจากการลดระดับคอเลสเตอรอลในกระแสเลือดเพียงอย่างเดียว หากแต่มาจากฤทธิ์ของยาต่อระบบหัวใจและหลอดหลายอย่างรวมกัน ที่เรียกว่า ไพลโอทรอปิกเอฟเฟกต์ (pleiotropic effect) โดยเฉพาะอย่างยิ่ง ฤทธิ์ในการลดการอักเสบ เพิ่มความคงตัวของคราบพลัคไขมันที่เกาะอยู่ในผนังหลอดเลือด (atherosclerotic plaques) รวมทั้งผลจากการรบกวนกระบวนการแข็งตัวของเลือด (coagulation and fibrinolysis system)[2]
มีดังนี้
ยาลดไขมันในกระแสเลือดกลุ่มสแตตินนี้มีทั้งชนิดที่ได้มาจากธรรมชาติ, กึ่งสังเคราะห์, หรือบางชนิดได้จากการสังเคราะห์ขึ้นเองภายในห้องปฏิบัติการ โดยสแตตินที่ได้มาจากธรรมชาติ ได้แก่ โลวาสแตติน, เมวาสแตติน, และ ปราวาสแตติน [3]สแตตินกึ่งสังเคราะห์ ได้แก่ ซิมวาสแตติน ซึ่งได้จากสารที่เกิดขึ้นจากกระบวนการสร้างโลวาสแตติน แต่ในปัจจุบันพบว่าเชื้อ Escherichia coli ที่มีการสร้างเอนไซม์ acetyltransferase มากเกินไป ส่วนสแตตินชนิดที่เหลือ คือ อะโทวาสแตติน, เซอริวาสแตติน, ฟลูวาสแตติน, โรสุวาสแตติน,และ พิทาวาสแตติน ล้วนแล้วแต่ได้จากการสังเคราะห์ขึ้นในห้องปฏิบัติการเท่านั้น[3][4]
ทั้งนี้ ยาลดไขมันในกระแสเลือดกลุ่มสแตตินที่ได้จากธรรมชาตินั้น ส่วนใหญ่แล้วมักได้จากกระบวนการการหมักผลิตภัณฑ์ธรรมชาติจำพวกเห็ดรา เช่น โลวาสแตตินที่ได้จากการหมักเห็ดนางรม (oyster mushroom หรือ Pleurotus ostreatus)[5] และจากการหมักข้าวแดงจากเชื้อราโมแนสคัส (Red Yeast Rice)[6][7][8][9]
ในปัจจุบัน ยากลุ่มสแตตินนั้นสามารถถูกสร้างได้โดยเห็ดราหลายชนิด ได้แก่ Aspergillus terreus, บางสายพันธ์ของตระกูล Monascus, Penicillium, Doratomyces, Eupenicillinum, Gymnoascus, Hypomyces, Paecilomyces, Phoma, Trichoderma และ Pleurotis ในกรณีการผลิตปราวาสแตติน ในระดับอุตสาหกรรมนั้นจะใช้วิธีการเปลี่ยนแปลงโครงสร้างของเมวาสแตติน โดยกระบวนการทางชีวภาพ (bioconversion) ถึงแม้ว่าปราวาสแตตินจะสามารถสร้างขึ้นได้จากเห็ดราบางสายพันธ์ในตระกูล Aspergillus และ Monascus ก็ตาม[3] ตารางต่อไปนี้เป็นตารางที่แสดงถึงสายพันธ์ของเห็ดราที่สามารถสร้างสแตตินได้[3]
ชนิดของสแตติน | สายพันธ์ของเห็ดรา |
---|---|
เมวาสแตติน |
Penicillium citrinum |
โลวาสแตติน |
Monascus rube |
ปราวาสแตติน |
Aspergillus sp. |
นอกจากโลวาสแตตินจะถูกสร้างได้จากเชื้อราบางสายพันธ์ดังแสดงในตารางดังข้างต้นแล้ว ยาดังกล่าวยังสามารถถูกสร้างได้จากเห็ดนางรม (Pleurotus ostreatus) ซี่งพบได้ทั่วไปในธรรมชาติและมีการผลิตเชิงอุตสาหกรรมเพื่อเป็นส่วนประกอบของอาหารหลายชนิด โดยเห็ดนางรมที่พบในธรรมชาตินั้นสามารถพบได้ทั่วไปแทบทุกส่วนของภาคพื้นทวีป ยกเว้นในแอนตาร์กติกา โดยมักพบเห็ดสายพันธ์ดังกล่าวขึ้นตามลำต้นของต้นไม้ที่ตายแล้ว นอกจากนั้นอาจพบขึ้นได้ตามกองฟางข้าว, ข้าวโพด, หรือธัญพืชชนิดอื่นๆ ได้[5][10] นอกเหนือจากนั้น การหมักข้าวแดงจากเชื้อราโมแนสคัส (Red Yeast Rice) ก็ถือเป็นอีกวิธีหนึ่งที่ใช้ในการสร้างโลวาสแตติน ซึ่งทำได้ดดยการหมักข้าวด้วยเชื้อราสายพันธ์ Monascus purpureus [6][7][8][9] ซึ่งเป็นสายพันธ์ที่พบได้ตามธรรมชาติในอาหารพื้นเมืองของจีน เช่น เป็ดปักกิ่ง (Peking Duck) เป็นต้น[11][12]
ในปี ค.ศ. 1575 นายแพทย์และนักกายวิภาคศาสตร์ชาวอิตาลีชื่อ Gabrielle Falloppio ค้นพบการเปลี่ยนแปลงพยาธิสภาพของหลอดเลือดเป็นครั้งแรก โดยพบการสะสมของหินปูนบริเวณผนังหลอดเลือด ซึ่งมีความสัมพันธ์กับการเกิดการเสื่อมสลายของกระดูก (bone degeneration)[15] ส่วนการเกิดคราบพลัคเกาะบริเวณผนังหลอดเลือดนั้นได้ถูกอธิบายไว้เป็นครั้งแรกในช่วงศตวรรษที่ 17 โดยนักกายวิภาคศาสตร์ชาวสวิสเซอร์แลนด์ 2 คน ชื่อ Johann Conrad Brunner และ Albrecht von Haller[16] และต่อมาในปี ค.ศ. 1799 Caleb Hillier Parry นายแพทย์ชาวอังกฤษพบว่าการเกิดโรคกล้ามเนื้อหัวใจขาดเลือด (ischemic heart disease) อาจมีความสัมพันธ์กับการเกิดโรคหลอดเลือดหัวใจแข็ง (coronary atherosclerosis)[15][17][18] จากนั้นก็เริ่มมีการใช้ศัพท์ทางการแพทย์ว่า arteriosclerosis เพื่อใช้แทนความผิดปกติของหลอดเลือดในรูปแบบดังกล่าว[19] ครั้งแรกในปี ค.ศ. 1835 โดยศัลยแพทย์ชาวฝรั่งเศส ชื่อ Jean Lobstein[20], ปี ค.ศ. 1904 โดย Felix Marchand พยาธิแพทย์ชาวเยอรมนี[21] และต่อมาในปี ค.ศ. 1843 Julius Vogel แพทย์ชาวเยอรมนีได้ค้นพบว่าส่วนประกอบหลักของคราบหลักที่เกาะอยู่ตามผนังหลอดเลือดนั้นมักเป็นคอเลสเตอรอล[22] ซึ่งบทบาทของคอเลสเตอรอลต่อการเกิดความผิดปกติของหลอดเลือดในรูปแบบดังกล่าวนั้นถูกค้นพบภายหลังในปี ค.ศ. 1852 และ 1856 โดย Karl von Rokitansky และ Rudolf Virchow ตามลำดับ[16] ในปี ค.ศ. 1913 Nikolai Anichkov พยาธิแพทย์ชาวรัสเซีย ได้ทำการศึกษาถึงความความสัมพันธ์ระหว่างคอเลสเตอรอลกับการเกิดโรคหลอดเลือดแข็งในสัตว์ทดลองที่ได้รับการเหนี่ยวนำให้มีภาวะคอเลสเตอรอลในเลือดสูง ผลการทดลองพบว่าสัตว์ทดลองเหล่านั้นเกิดโรคหลอดเลือดแข็งดังเช่นสมมติฐานที่ตั้งไว้[23]
ในการศึกษาวิจัยในประเด็นที่เชื่อกันว่า การเกิดโรคหลอดเลือดแข็งนั้นถือเป็นเรื่องปกติที่เกิดขึ้นได้จากการเสื่อมถอยตามธรรมชาติของร่างกายมนุษย์เมื่อมีอายุมากขึ้นและไม่มีวิธีการใดที่จะรบกวนการเกิดกระบวนการดังกล่าวได้นั้นยังคงไม่มีการศึกษาวิจัยเพิ่มเติม จนกระทั่งในช่วงต้นทศวรรษที่ 40[24] ในปี ค.ศ. 1949 John Gofman ได้ค้นพบไลโปโปรตีนคอเลสเตอรอลชนิดความเข้มข้นต่ำ (low-density lipoprotein; LDL) ในกระแสเลือด จากนั้นอีกไม่กี่ปีถัดมา Gofman ก็ได้ค้นพบความสัมพันธ์ระหว่างการมีระดับ LDL ในกระแสเลือดสูงกับการเกิดโรคหลอดเลือดหัวใจ (coronary heart disease)[23] จากนั้นในปี ค.ศ. 1959 สถานบันวิจัยเซลล์ชีววิทยาและพันธุศาสตร์ระดับโมเลกุลมักซ์ พลังค์ (Max Planck Institute of Molecular Cell Biology and Genetics; MPI-CBG) ในเยอรมนีได้ค้นพบว่าเอนไซม์ HMG-CoA reductase นั้นเป็นเอนไซม์ที่มีบทบาทสำคัญในกระบวนการการสังเคราะห์คอเลสเตอรอลของร่างกายมนุษย์[25] และต่อมาในปี ค.ศ. 1961 จากการศึกษาวิจัยที่ตีพิมพ์ในวารสารทางการแพทย์ฉบับหนึ่งที่มีชื่อการศึกษาว่า Framingham study (Framingham Heart Study) ได้ค้นพบว่า การมีระดับคอเลสเตอรอลในกระแสเลือดที่สูงกว่าปกตินั้นถือเป็นอีกหนึ่งความเสี่ยงต่อการเกิดโรคหลอดเลือดหัวใจ (cardiovascular diseases)[26][27] หลังจากนั้นไม่นาน เอกสารตีพิมพ์ของสมาคมโรคหัวใจแห่งสหรัฐอเมริกา (American Heart Association) ได้ยืนยันถึงความสัมพันธ์ดังกล่าวและให้คำแนะนำเกี่ยวกับการควบคุมอาหารในผู้ที่มีความเสี่ยงต่อการเกิดโรคหลอดเลือดหัวใจสูง [23] อย่างไรก็ตาม ในช่วงทศวรรษที่ 60 ได้มีการค้นพบในประเด็นดังกล่าวเพิ่มเติมว่า ถึงแม้จะมีการควบคุมการรับประทานอาหารเป็นอย่างดี ร่างกายก็ยังสามารถสร้างคอเลสเตอรอลเพิ่มขึ้นได้ เพื่อให้เพียงพอต่อความต้องการของร่างกายได้โดยผ่านกระบวนการการเพิ่มการทำงานของเอนไซม์ที่ใช้สังเคราะห์คอเลสเตอรอลในตับ[28] และในช่วงนั้น บทบาทของการใช้ยาลดระดับไขมันในกระแสเลือดเพื่อลดอัตราการเสียชีวิตและอัตราการเกิดความพิการจากโรคหลอดเลือดหัวใจนั้นยังสรุปได้ไม่แน่ชัดและยังคงเป็นเพียงการตั้งสมมติฐานที่ยังไม่มีการพิสูจน์ให้เห็นได้เด่นชัด[29] จนกระทั่งในปี ค.ศ. 1984 การศึกษาวิจัยที่มีชื่อว่า LRC-CPPT ได้ค้นพบว่า การลดลงของระดับ LDL ในกระแสเลือดนั้นสามารถลดอัตราการเสียชีวิตและอัตราการเกิดความพิการจากโรคหลอดเลือดหัวใจในผู้ป่วยชายที่มีระดับ LDL ในกระแสเลือดสูงได้[30]
ในปี ค.ศ. 1973 เอริกะ เอ็นโดะ (Akira Endo) นักชีวเคมีชาวญี่ปุ่น ได้ทำการคัดแยกสารประกอบต่างๆ ที่ได้จากเชื้อจุลชีพมากกว่า 6,000 ชนิด โดยเฉพาะกลุ่มของเชื้อรา และพบว่าสารประกอบ ML-236B (เมวาสแตติน) ที่ถูกสร้างโดยเชื้อ Penicillium citrinum นั้นมีคุณสมบัติในการลดระดับคอเลสเตอรอลและ LDL ในกระแสเลือดทั้งในสัตว์ทดลองและในมนุษย์ แต่การศึกษาถึงผลของสารดังกล่าวในสัตว์ทดลองต่อมาในภายหลังพบว่ามีความเป็นพิษค่อนข้างสูง[28][31] ในปี ค.ศ. 1976 นักวิทยาศาสตร์ชาวอังกฤษกลุ่มหนึ่งก็สามารถแยกสารประกอบที่มีชื่อว่า คอมเพคติน (Compactin) ได้จากสารเมทาบอไลต์ของเชื้อรา Penicillium brevicompactum ซึ่งต่อมาทราบว่าสารดังกล่าวนั้นเป็นสารชนิดเดียวกันกับเมวาสแตติน อย่างไรก็ตาม นักวิทยาศาสตร์กลุ่มดังกล่าวนั้นมุ่งเน้นศึกษาคุณสมบัติในการต้านเชื้อราของสารที่ค้นพบเป็นหลัก ไม่ได้มุ่งเน้นศึกษาฤทธิ์ในการยับยั้งเอนไซม์ HMG-CoA reductase แต่อย่างใด[32] ต่อมาในปี ค.ศ. 1978 คณะศึกษาของ Alfred Alberts ได้ค้นพบสารชนิดหนึ่งที่มีโครงสร้างคล้ายคลึงกับสารประกอบ ML-236B ที่ได้จากกระบวนการการหมักของรา Aspergillus terreus ซึ่งต่อมาสารดังกล่าวถูกเรียกชื่อว่า Mevinolin[33][34] และในช่วงเวลาเดียวกันนี้เอง เอริกะ เอ็นโดะ ก็สามารถคัดแยกสารประกอบที่มีชื่อว่า Monacolin K ซึ่งมีกลไกออกฤทธิ์คล้ายคลึงกับสแตติน ได้จากรา Monascus ruber จากนั้นในปี 1979 เอ็นโดะก็ได้รับสิทธิบัตรในการผลิตสารดังกล่าว และในช่วงปลายปีนั้น ก็ได้มีการค้นพบว่า โดยที่จริงแล้ว Monacolin K และ Mevinolin นั้นเป็นสารประกอบชนิดเดียวกัน ซึ่งเป็นที่รู้จักกันดีในปัจจุบันภายใต้ชื่อว่า โลวาสแตติน[34]
ในปี ค.ศ. 1987 ได้มีการผลิต โลวาสแตติน เพื่อจำหน่ายเชิงการค้าเป็นครั้งแรก ภายใต้ชื่อการค้า Mevacor[33] ของบริษัท Merck & Co. (หรือ Merck Sharp & Dohme, MSD สำหรับในประเทศอื่นนอกเหนือจากสหรัฐอเมริกาและแคนาดา) ซึ่งสแตตินชนิดแรกที่ถูกผลิตขึ้นในเชิงอุตสาหกรรมการค้า[35] และต่อมาไม่นานนัก บริษัท ไดอิจิ ซังเคียว (Daiichi Sankyo) ซึ่งเป็นผู้ค้นพบเมวาสแตติน ได้พัฒนาสแตตินชนิดใหม่ซึ่งเป็นอนุพันธ์ของเมวาสแตตินขึ้นมา มีชื่อว่า ปราวาสแตติน ซึ่งมีความแรงและความจำเพาะในการออกฤทธิ์มากกว่าสารต้นแบบเดิม[36] และถูกนำออกจำหน่ายในญี่ปุ่นภายใต้ชื่อการค้า Mevalotin ในปี ค.ศ. 1988 และปี ค.ศ. 1991 ในสหรัฐอเมริกา ภายใต้ชื่อการค้า Pravachol[37] และจากนั้นอีก 2 เดือนถัดมา ซิมวาสแตติน ภายใต้ชื่อการค้า Zocor ก็ถูกผลิตออกวางจำหน่ายในท้องตลาด[38] ส่วนสแตตินที่ได้จากการสังเคราะห์ชนิดแรกที่ถูกผลิตออกจำหน่ายเชิงการค้า คือ ฟลูวาสแตติน (ชื่อการค้า Lescol) ของบริษัท โนวาร์ติส (Novartis) ในช่วงปี ค.ศ. 1993 และอีก 3 ปีถัดมา บริษัทไฟเซอร์ (Pfizer) ก็ได้ผลิตสแตตินสังเคราะห์อีกชนิดหนึ่งออกจำหน่ายในท้องตลาด คือ อะโทวาสแตติน ภายใต้ชื่อการค้า Lipitor หลังจากนั้นมาเพียงแค่อีก 1 ปี บริษัท เบเยอ่ร์เอจี (Bayer AG) ก็ได้ผลิตสแตตินสังเคราะห์อีกชนิด คือ เซอริวาสแตติน ออกจำหน่ายในท้องตลาด ภายใต้ชื่อการค้า Baycol และ Lipobay [39] ซึ่งต่อมาในวันที่ 8 สิงหาคม ค.ศ. 2001 ตัวยาดังกล่าวถูกถอนทะเบียนออกจากตลาดโดยความสมัครใจของบริษัท (ภายใต้ความเห็นชอบของคณะกรรมการอาหารและยาของสหรัฐอเมริกา) เนื่องจากการใช้ยาดังกล่าวนั้นเพิ่มความเสี่ยงต่อการเกิดอาการข้างเคียงที่รุนแรงคือ การเกิดภาวะกล้ามเนื้อสลายแบบ rhabdomyolysis[39][40] จากนั้น ในปี ค.ศ. 2000 บริษัท โนวาร์ติส (Novartis) ได้มีการวางจำหน่ายยากลุ่มสแตตินชนิดใหม่ คือ ฟลูวาสแตติน ภายใต้ชื่อการค้า Lescol XL[39] และถัดจากนั้นมาอีกแค่ 3 ปี บริษัทโควะ ฟาร์มาซูตคอลส์ (Kowa Pharmaceuticals) ก็ได้มีการผลิตสแตตินตัวใหม่อีก 2 ชนิด ออกจำหน่ายในท้องตลาด คือ พิทาวาสแตติน ภายใต้ชื่อการค้า Livalo และโรสุวาสแตติน ภายใต้ชื่อการค้า Crestor และ AstraZeneca[14]
จากข้อมูลการศึกษาทางคลินิกหลายการศึกษาที่มีในปัจจุบันให้ผลสนับสนุนข้อเท็จจริงที่ว่าการใช้ยากลุ่มสแตตินมีผลลดอุบัติการณ์การเกิดโรคหลอดเลือดหัวใจในผู้ที่มีความเสี่ยงต่อการเกิดโรคดังกล่าวสูง ซึ่งรวมไปถึงการลดอัตราการเสียชีวิตจากการเกิดความผิดปกติดังกล่าวด้วย การศึกษาที่สำคัญที่ให้ข้อมูลยืนยันถึงประสิทธิภาพของสแตตินในการเป็นยาป้องกันปฐมภูมิ (primary prevention) ต่อการเกิดโรคหลอดเลือดหัวใจ ได้แก่ การศึกษา WOSCOPS, AFCAPS / TEXCAPS, HPS และ JUPITER ส่วนการศึกษาที่ให้ข้อมูลยืนยันถึงประสิทธิภาพของสแตตินในการเป็นยาป้องกันทุติยภูมิ (secondary prevention) ต่อการเกิดโรคหลอดเลือดหัวใจ ได้แก่ การศึกษา 4S, LIPID และ CARE และการศึกษาที่ให้ผลสนับสนุนถึงประสิทธิภาพของการใช้สแตตินร่วมกับยาลดไขมันในกระแสเลือดชนิดอื่น ได้แก่ การศึกษา ACCORD study และ LIPID SHARP ซึ่งรายละเอียดของแต่ละการศึกษาดังแสดงในตารางต่อไปนี้[41][42][43][44][45][46][47][48][49]
ชื่อย่อ การศึกษา | ชื่อ การศึกษา | ระยะเวลา ศึกษา | ยาที่ใช้ ในการศึกษา | กลุ่มตัวอย่าง | วารสาร ที่ตีพิมพ์ | จำนวน กลุ่มตัวอย่าง | ผลการศึกษา |
4S | Scandinavian Simvastatin Survival Study |
5 ปี | ซิมวาสแตติน |
|
Lancet[41] | 4444 |
|
LIPID | Long term Intervention with Pravastatin in Ischemic Disease |
6 ปี | ปราวาสแตติน |
|
NEJM[42] | 9014 |
|
CARE | Cholesterol And Recurrent Events |
5 ปี | ปราวาสแตติน |
|
NEJM[43] | 4159 |
|
WOSCOPS | West Of Scotland Coronary Prevention Study |
5 ปี | ปราวาสแตติน |
|
NEJM[44] | 6595 |
|
TEXCAPS | Air Force/Texas Coronary Atherosclerosis Prevention Study |
5 ปี | โลวาสแตติน |
|
American Journal of Cardiology[45] |
6605 |
|
HPS | Heart Protection Study of cholesterol lowering with simvastatin |
5 ปี | ซิมวาสแตติน |
|
Lancet[46] | 20,536 |
|
JUPITER | Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin trial |
2 ปี | โรสุวาสแตติน |
|
NEJM[47] | 17,802 |
|
ACCORD LIPID | Action to Control Cardiovascular Risk in Diabetes Lipid Trial |
5 ปี | ซิมวาสแตติน ฟีโนไฟเบรต |
|
NEJM[48] | 5518 |
|
SHARP | Study of Heart and Renal Protection |
5 ปี | ซิมวาสแตติน อีเซทิไมบ์ |
|
Lancet[49] | 9270 |
|
โครงสร้างหลักของสแตตินที่ได้จากธรรมชาติ (โลวาสแตติน, ปราวาสแตติน, ซิมวาสแตติน, รวมไปถึงเมวาสแตตินที่ยังไม่มีการนำมาใช้ในทางคลินิก) จะมีโครงสร้างเป็น hydrogenated naphthalene ที่ประกอบไปด้วยคาร์บอนจำนวน 7 อะตอม มีหมู่เมธิลที่ตำแหน่งที่ 7, หมู่ไฮดรอกซิลในตำแหน่งที่ 4 (สำหรับปราวาสแตตินและ active form ของโลวาสแตติน, ซิมวาสแตติน, และแมวาสแตติน จะถูกเปลี่ยนแปลงโดยปฏิกิริยาไฮโดรไลสิสได้เป็น β-hydroxy carboxylic acid)[51] ส่วนโครงสร้างหลักของสแตตินที่ได้จากการสังเคราะห์ ได้แก่ อะโทวาสแตตินมีโครงสร้างหลักเป็นวงไพร์โรล (pyrrole), ฟลูวาสแตตินมีโครงสร้างหลักเป็นวงอินโดล (indole), เซอริวาสแตตินมีโครงสร้างหลักเป็นวงไพริดีน (pyridine), โรสุวาสแตตินมีโครงสร้างหลักเป็นวงไพริมิดีน (pyrimidine) และปราวาสแตตินมีโครงสร้างเป็นวงควิโนโลน (quinolone) [51][52] ทั้งนี้ นอกจากโครงสร้างของสแตตินทุกชนิดจะมีความคล้ายคลึงกันกับโมเลกุลของ 3-hydroxy-3-methylglutaryl-coenzyme A (HMG- CoA) แล้ว ยังมีความจำเพาะในการจับกับเอนไซม์ 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase ได้มากกว่า HMG-CoA ถึง 1000 เท่า ซึ่งเมื่อมีการเกิดสารประกอบเชิงซ้อนระหว่างเอนไซม์ดังกล่าวกับยากลุ่มสแตตินแล้วจะเกิดการจับกันอย่างสมบูรณ์แต่ก็สามารถเกิดการผันกลับได้ (competitively and reversibly)[53]
จากข้อมูลที่ได้จากการศึกษาวิจัยพบความสัมพันธ์ระหว่างโครงสร้างของสแตตินกับรูปแบบในการจับกับเอนไซม์ HMG-CoA reductase ดังต่อไปนี้[54]
กระบวนการสังเคราะห์คอเลสเตอรอลในมนุษย์นั้นต้องผ่านขั้นตอนต่างๆ หลายขั้นตอน โดยขั้นตอนแรก คือ การสร้าง mevalonate โดยการรีดิวซ์ 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) ซึ่งในขั้นตอนนี้จำเป็นต้องใช้เอนไซม์ HMG-CoA reductase ในiรูปแบบที่ถูกรีดิวซ์ (reduced form) ของ nicotinamide adenine dinucleotide phosphate (NADPH + H +) ในการเกิดปฏิกิริยา ซึ่ง mevalonate ที่เกิดขึ้นนี้จะถูกเปลี่ยนแปลงโดยเอนไซม์ต่างๆในร่างกายอีกหลายขั้นตอนจนเกิดเป็นคอเลสเตอรอลในที่สุดสแตตินออกฤทธ์ยับยั้งเอนไซม์ ซึ่งกระบวนการนี้จะเกิดขึ้นที่ตับ และคอเลสเตอรอลที่ผลิตได้คิดเป็นร้อยละ 70 ของคอเลสเตอรอลภายในร่างกายทั้งหมด โดยการทำงานของเอนไซม์ HMG-CoA reductase นี้จะถูกยับยั้งได้โดยปริมาณน้ำดีในร่างกาย, ระดับ mevalonate และระดับคอเลสเตอรอลในร่างกายเท่านั้น[55] ดังนั้นจึงอาจถือได้ว่าเอนไซม์ HMG-CoA reductase ถือเป็นเอนไซม์ที่สำคัญในกระบวนการการสร้างคอเลสเตอรอลในมุนษย์ การยับยั้งการทำงานของเอนไซม์นี้จะมีผลลดระดับคอเลสเตอรอลในกระแสเลือดลงได้[56]
การรออกฤทธิ์ของสแตตินแต่ละชนิดนั้นจะมีความจำเพาะแตกต่างกันไปในแง่ของความสามารถในการเข้าจับกับเอนไซม์หรือระยะเวลาที่จับกับเอนไซม์ ซึ่งจะเกิดขึ้นได้โดยทันทีเมื่อยาเข้าสู่ภายในเซลล์ตับ[57][58] การยับยั้งการสร้างคอเลสเตรอลจะส่งผลให้เกิดการลดลงระดับคอเลสเตอรอลในกระแสเลือด ทำให้ร่างกายขาดแคลนคอเลสเตอรอล เป็นผลให้รบกวนทำงานของยีนหลายยีนในร่างกาย โดยเฉพาะอย่างยิ่ง SREBP ซึ่งเป็นโปรตีนที่ถูกสร้างมาจากยีนที่ทำหน้าที่ควบคุมการสร้างจำพวกสเตอรอล[57] โดยการรบกวนการทำงานของยีนนี้จะทำให้เกิดสร้างตัวรับ LDL ที่ผิวเซลล์ตับให้มีจำนวนเพิ่มขึ้น และผลจากการที่มีตัวรับ LDL เพิ่มขึ้นนี้จะทำให้ LDL ถูกเก็บเข้าสู่เซลล์ตับมากขึ้น เป็นผลให้ระดับ LDL ในกระแสเลือดลดลงได้ในที่สุด โดยผลที่เกิดขึ้นจากกระบวนการเหล่านี้จะเห็นผลได้ชัดเจนภายหลัง 2 สัปดาห์แรกของการใช้ยา และจะเห็นผลได้อย่างเต็มที่หลังจากการรับประทานยาครั้งแรก 6 สัปดาห์[58]
กลไกพื้นฐานของสแตตินที่ก่อให้เกิดผลด้านไพลโอโทรปิคของสแตตินคือ การยับยั้งการทำงานของเอนไซม์ 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase ทำให้มีสร้างสารกลุ่ม isoprenoids ลดน้อยลง ซึ่งจะส่งผลดีต่อพยาธิสภาพของหลอดเลือด โดยจะลดการเกิดการทำลายเซลล์ผนังหลอดเลือดโดยอนุมูลอิสระ (oxidative stress) และลดการเกิดคราบพลัคบริเวณผนังหลอดเลือด ซึ่งคราบพลัคที่เกิดขึ้นเหล่านี้อาจทำให้เกิดการอุดกั้นของเส้นเลือด หรืออาจเหนี่ยวนำให้เกิดการอักเสบและมีผลยับยั้งการซ่อมแซมเส้นเลือดที่สึกหรอได้[59] ตารางต่อไปนี้ เป็นตารางเปรียบเทียบผลไพลโอโทรปิคของสแตตินชนิดต่างๆ[60][61][62][63][64]
เกล็ดเลือด | ยับยั้งการกระตุ้นเกล็ดเลือด | + | – | + | – | + | – | + | – |
ห้ามการจับกันของเกล็ดเลือด | – | – | + | – | + | – | – | – | |
เยื่อบุหลอดเลือด | กระตุ้นหรือเพิ่มการสังเคราะห์ไนตริกออกไซด์ | – | – | – | + | + | – | – | + |
ยับยั้งการสร้างอนุมูลอิสระ | – | – | + | – | + | – | + | + | |
เพิ่มจำนวนหรือการทำงานของเซลล์ต้นกำเนิดผนังหลอดเลือด | + | – | – | – | – | – | – | + | |
เซลล์กล้ามเนื้อเรียบของหลอดเลือด | ลดการเพิ่มจำนวนเซลล์ | – | – | – | – | + | – | + | + |
ลดการเกิด migration | – | – | – | – | – | – | + | + | |
เพิ่มการเกิดอะพอพโทซิส | + | + | + | + | + | – | – | – | |
แมคโครฟาจ/โมโนไซต์ | ลดการเพิ่มจำนวนเซลล์ | – | – | – | – | – | – | – | – |
ลดการทำงานของเอนไซม์ MNP protease | – | + | – | – | – | + | + | + | |
ลดการเกิดoxidized LDL | – | – | – | + | + | – | + | + | |
Vasculitis | ลดการทำงานของ MHC-II | + | – | – | + | + | + | + | + |
ลดระดับ hs-CRP | – | – | – | + | + | + | + | + |
ในปี ค.ศ. 2014 มียากลุ่มสแตตินที่ถูกวางจำหน่ายในม้องตลาดอยู่ทั้งสิ้น 8 ชนิด ได้แก่ อะโทวาสแตติน, ฟลูวาสแตติน, โลวาสแตติน, ปราวาสแตติน, โรสุวาสแตติน, ซิมวาสแตติน, พิทาวาสแตติน, พิทาวาสแตติน และเมวาสแตติน ส่วนเซอริวาสแตตินนั้นถูกถอนทะเบียนออกจากตลาดในปี ค.ศ. 2001[65] เนื่องจากการใช้ยาดังกล่าวจะเพิ่มความเสี่ยงต่อการเกิดภาวะกล้ามเนื้อสลายแบบ rhabdomyolysis เป็นอย่างมาก[66] จากความแตกต่างทางเคมีและเภสัชพลนศาสตร์ของสแตตินแต่ละชนิดทำให้สามารถแยกสแตตินชนิดต่างๆ ออกไปเป็น 4 รุ่น ได้แก่ [67]
ตารางต่อไปนี้เป็นตารางแสดงสูตรโครงสร้างของสแตตินชนิดต่างๆ ที่ถูกค้นพบตั้งแต่อดีตจนถึงปัจจุบัน
อะโทวาสแตติน | เซอริวาสแตติน | ฟลูวาสแตติน | โลวาสแตติน | เมวาสแตติน |
---|---|---|---|---|
C 33H 34FN 2O 5 |
C 26H 34FNO 5 |
C 24H 26FNO 4 |
C 24H 36O 5 |
C 23H 34O 5 |
พิทาวาสแตติน | ปราวาสแตติน | โรสุวาสแตติน | ซิมวาสแตติน | |
C 25H 24FNO 4 |
C 23H 36O 7 |
C 22H 28FN 3O 6S |
C 25H 38O 5 | |
ยากลุ่มสแตตินเป็นยาที่มีการสั่งใช้เป็นจำนวนมาก เนื่องจากในปัจจุบันประชากรโลกมีแนวโน้มที่จะเกิดความผิดปกติของระดับไขมันในเลือดเพิ่มมากขึ้น ซึ่งถือเป็นความเสี่ยงที่สำคัญอีกอย่างหนึ่งต่อการเกิดโรคหลอดเลือดหัวใจและโรคหลอดเลือดสมอง โดยพบว่ากว่าร้อยละ 50 และ 35 ของประชากรในประเทศที่มีรายได้สูงมีความเสี่ยงต่อการเกิดโรคหลอดเลือดหัวใจและหลอดเลือดสมองตามลำดับ ในขณะที่ในประเทศที่มีรายได้ปานกลาง-น้อยก็จะมีสัดส่วนของประชากรที่มีความเสี่ยงดังกล่าวลดลงมาตามลำดับ ดังนั้น การใช้ยากลุ่มสแตตินในผู้ป่วยที่มีภาวะไขมันในเลือดสูงหลายชนิดในรูปแบบยาสูตรผสมร่วมกับยาลดไขมันในกระแสเลือดชนิดอื่น หรือการใช้สแตตินผสมกับยารักษาโรคเรื้อรังอื่นในผู้ที่มีโรคร่วม จึงถือเป็นอีกทางเลือกหนึ่งที่จะสามารถลดค่าใช้จ่ายและงบประมาณในการดูแลสุขภาวะทางสุขภาพของประชากรเหล่านั้นได้ นอกจากนี้แล้ว การใช้ยาในรูปแบบสูตรผสมยังเป็นผลให้ผู้ป่วยเหล่านั้นรับประทานยาง่ายขึ้น ไม่จำเป็นต้องรับประทานยาหลายหน่วยพร้อมกัน โดยที่ประสิทธิภาพในการรักษาของยาแต่ละชนิดในยาสูตรผสมนั้นไม่แตกต่างไปจากเดิม จึงถือเป็นการเพิ่มความร่วมมือในการใช้ยาของผู้ป่วยทางหนึ่ง[68] โดยยาสูตรผสมของสแตตินที่มีจำหน่ายในท้องตลาดปัจจุบัน ดังแสดงในตารางต่อไปนี้
ตาราง 1 แสดงยาสูตรผสมที่มีขนาดของสแตตินหลายขนาด[47][48][49][69][70][71]
สแตติน | แอมโลดิปีน | อีเซทิไมบ์ | ไนอะซิน | ฟีโนไฟเบรต | แอสไพริน | แอสไพริน รามิพริล | ซิทากลิปทิน |
อะโทวาสแตติน | |||||||
---|---|---|---|---|---|---|---|
เซอริวาสแตติน | |||||||
ฟลูวาสแตติน | |||||||
โลวาสแตติน | |||||||
พิทาวาสแตติน | |||||||
ปราวาสแตติน | |||||||
โรสุวาสแตติน | |||||||
ซิมวาสแตติน |
ตารางที่ 2 แสดงยาสูตรผสมที่มีขนาดของสแตตินขนาดเดียว (fixed dose)[47][48][49][72]
สแตติน | แอสไพริน | อะทีโนลอล | อีนาลาพริล | ไฮโดรคลอไรไทอะไซด์ | ริสิโนพริล | เมโทโพรลอล | รามิพริล | วอลซาร์ทาน |
อะโทวาสแตติน | ||||||||
---|---|---|---|---|---|---|---|---|
ซิมวาสแตติน | ||||||||
ตารางต่อไปนี้เป็นตารางแสดงคุณสมบัติทางกายภาพ และตารางแสดงค่าการละลายของสแตตินชนิดต่างๆ ตามลำดับ
คุณสมบัติ | อะโทวาสแตติน[73] | เซอริวาสแตติน[74] | ฟลูวาสแตติน[75] | โลวาสแตติน[76] | พิทาวาสแตติน[77] | ปราวาสแตติน[78] | โรสุวาสแตติน[79] | ซิมวาสแตติน[80] |
มวลโมลาร์ | 557.63 | 411.46 | 404.53 | 421.46 | 424.52 | 481.53 | 418.56 | |
---|---|---|---|---|---|---|---|---|
ลักษณะภายนอก | ผงสีขาวหรือเทาขาว[81] | ผงผลึกสีขาวหรือเทาขาว, เหลืองอ่อนไปจนถึงแดงอ่อน ดูดความชื้นได้ดีมาก[83] | ผงผลึกสีขาวหรือเกือบขาว[84] | ผงสีขาวหรือเหลืองอ่อน[85] | ผงหรือผลึกผงสีขาวถึงเหลืองอ่อน ดูดความชื้นได้ดี[86] | ผงสีขาว[87] | ผงผลึกสีขาวหรือเกือบขาว[88] | |
จุดหลอมเหลว [°C] | 159.2-160.7 | 194-197 | 174.5 | 171-174[90] | 171.2-173 | 151-156[91] | 135-138 | |
logP | 5.7 | 4.5 | 4.26 | 3.75 | 0.59 | 0.13 | 4.68 | |
ค่าการละลายในตัวทำละลายชนิดต่างๆ (mg/ml)[73][77][80][92][93][94][95][96][97][98][99] | ||||||||
น้ำ | 1.23 | 0.00046 | 0.0004 | 0.00394 | 19.0 | 0.0886 | 0.0122 | |
อะซิโตน | 47.0 | |||||||
อาซีโตไนไตรล์ | 28.0 | |||||||
เอ็น-บิวทานอล | 7.0 | |||||||
ไอโซบิวทานอล | 14.0 | |||||||
คลอโรฟอร์ม | 350.0 | |||||||
DMF | 15.0 | 10.0 | 90.0 | 30.0 | 30.0 | 5.0 | 20.0 | |
DMSO | 15.0 | 10.0 | 25.0 | 30.0 | 5.0 | 20.0 | ||
เอทานอล | 0.5 | 0.5 | 16.0 | 30.0 | 1.0 | 20.0 | ||
เมทานอล | 28.0 | |||||||
เอ็น-ออคทานอล | 2.0 | |||||||
เอ็น-โพรพานอล | 11.0 | |||||||
ไอโซโพรพานอล | 20.0 |
เมื่อสแตตินสัมผัสกับแสงแดดหรือแสงรังสีจากแหล่งสร้างแสงอื่นที่มีคุณสมบัติคล้ายคลึงกับแสงแดด พบว่าไม่เกิดปฏิกิริยาการเสื่อมสลายของตัวยา[100][101] ถึงแม้ว่าจะมีการเกิดปฏิกิริยาไฮโดรไลสิสที่บริเวณวงแหวนแลคโตนของโครงสร้างหลัก แต่ปฏิกิริยาดังกล่าวนั้นสามารถผันกลับได้[101] จากการทดลองในห้องปฏิบัติการพบว่า การฉายรังสีอุลตร้าไวโอเลตความยาวคลื่น 254 นาโนเมตรไปยังสแตติน พบว่าสามารถเหนี่ยวนำให้เกิดการสลายตัวของสแตตินได้อย่างช้าๆ[101]
ส่วนการตกค้างของยากลุ่มสแตตินในสิ่งแวดล้อมนั้น พบการเกิดการตกค้างได้น้อยมาก เนื่องจากยากลุ่มดังกล่าวโดยส่วนใหญ่มักถูกขับออกจากร่างกายในรูปแบบของสารเมทาบอไลต์[102]โดยมีรายงานการพบอะโทวาสแตตินในสิ่งปฏิกูลและน้ำในแม่น้ำ[101] ปกติแล้ว สแตตินเมื่ออยู่ในตัวกลางที่เป็นสารละลายภายใต้สภาพแวดล้อมที่ต้องสัมผัสกับแสงอาทิตย์และอุณหภูมิสูงจะเกิดการสลายตัวไปเป็นรูปแบบที่ไม่สามารถออกฤทธิ์ได้ จนเกิดการสลายตัวของสารได้ในที่สุด[101][103] ส่วนในสภาวะที่ไม่มีแสงและอยู่ในแก๊สเฉื่อย ยากลุ่มสแตตินจะเกิดปฏิกิริยาไฮโดรไลสิสได้อย่างช้าๆ[101] โดยปฏิกิริยาการสลายตัวนี้จะเพิ่มอัตราเร็วขึ้นจนถึงระดับที่มีนัยสำคัญทางสถิติในสภาวะที่เป็นด่าง
เมื่อเปรียบเทียบประสิทธิภาพในการลดระดับ LDL ของสแตตินชนิดต่างๆ พบว่าเซอริวาสแตติน มีความแรงในการลดระดับ LDL ได้มากที่สุด รองลงมาเป็น โรสุวาสแตติน, อะโทวาสแตติน, ซิมวาสแตติน, โลวาสแตติน, ปราวาสแตติน และ ฟลูวาสแตติน ตามลำดับ ส่วนพิทาวาสแตตินนั้นยังไม่มีการศึกษามากพอที่จะยืนยันถึงประสิทธิภาพได้เด่นชัด[104] ตารางต่อไปนี้เป็นตารางที่แสดงถึงประสิทธิภาพในการลดระดับคอเลสเตอรอลในกระแสเลือดของสแตตินชนิดต่างๆ ในขนาดที่ต่างกัน
Statin equivalent dosages | ||||||
---|---|---|---|---|---|---|
% LDL ที่ลดลง (ประมาณ) | อะโทวาสแตติน | ฟลูวาสแตติน | โลวาสแตติน | ปราวาสแตติน | โรสุวาสแตติน | ซิมวาสแตติน |
46–50% | 40 mg | – | – | – | 10–20 mg | 80 mg* |
50–55% | 80 mg | – | – | – | 20 mg | – |
56–60% | – | – | – | – | 40 mg | – |
* ไม่แนะนำให้ใช้ในขนาด 80-mg dose เนื่องจากจะเพิ่มความเสี่ยงต่อการเกิดภาวะกล้ามเนื้อสลายแบบ rhabdomyolysis | ||||||
ขนาดยาเริ่มต้น | ||||||
ขนาดยาเริ่มต้น | 10–20 mg | 20 mg | 10–20 mg | 40 mg | 10 mg; 5 mg สำหรับผู้ที่มีภาวะ พร่องไทรอยด์ฮอร์โมน, อายุ >65 ปี, ชาวเอเชีย | 20 mg |
กรณีต้องการลด LDL เป็นจำนวนมาก | 40 mg ถ้าต้องการลด >45% | 40 mg ถ้าต้องการลด>25% | 20 mg ถ้าต้องการลด >20% | -- | 20 mg ถ้า LDL >190 mg/dL (4.87 mmol/L) | 40 mg ถ้าต้องการลด >45% |
เวลาที่เหมาะสมในการรับประทานยา | ไม่จำกัด | ตอนเย็น | พร้อมอาหารเช้า | ไม่จำกัด | ไม่จำกัด | ตอนเย็น |
กราฟต่อไปนี้แสดงประสิทธิภาพในการลดระดับไลโปโปรตีนคอเลสเตอรอลชนิดความหนาแน่นต่ำ (แสดงด้วยเส้นกราฟสีฟ้า), ระดับคอเลสเตอรอลรวม (แสดงด้วยเส้นกราฟสีน้ำตาล) และระดับไตรกลีเซอรได์ (แสดงด้วยเส้นกราฟสีเขียว)ในกระแสเลือดของยากลุ่มสแตตินแต่ละชนิดในขนาดความแรงต่างๆ โดยเปรียบเทียบกับค่าพื้นฐานที่ยังไม่ได้รับการรักษาด้วยยา
กราฟต่อไปนี้แสดงประสิทธิภาพในการเพิ่มระดับไลโปโปรตีนคอเลสเตอรอลชนิดความหนาแน่นสูง (HDL cholesterol) ในกระแสเลือดของยากลุ่มสแตตินแต่ละชนิดในขนาดความแรงต่างๆ โดยเปรียบเทียบกับค่าพื้นฐานที่ยังไม่ได้รับการรักษาด้วยยา
ค่าชีวปริมาณออกฤทธิ์ (bioavailability)ของสแตตินนั้นมีค่าแตกต่างกันออกไป โดยมีค่าอยู่ระหว่าง 5-80% ซึ่งค่านี้จะมีความสัมพันธ์กันกับการเกิดเฟิร์สท-พาสส์ เมตาโบลิซึม (first-pass metabolism) และการสะสมของสแตตินในเซลล์ตับ ส่วนความสามารถในการกระจายตัวไปยังเนื้อเยื่อต่างๆของร่างกายนั้นจะขึ้นอยู่กับความสามารถในการละลายในไขมันของสแตตินแต่ละชนิด[105] โดยอะโทวาสแตติน, เซอริวาสแตติน, โลวาสแตติน, และซิมวาสแตตินจัดว่าเป็นสแตตินที่ละลายในไขมันได้ดี ส่วนสแตตินชนิดอื่นๆ ได้แก่ ฟลูวาสแตติน,โรสุวาสแตติน, พิทาวาสแตติน และปราวาสแตตินนั้นถือเป็นสแตตินที่ละลายในน้ำ[4] ส่วนสัดส่วนการถูกดูดซึมโดยลำไส้เล็กของสแตตินนั้นจะอยู่ระหว่าง 30-50% ของขนาดที่รับประทาน ตารางต่อไปนี้เป็นตารางเปรียบเทียบค่าพารามิเตอร์ทางเภสัชจลนศาสตร์ต่างๆ ของสแตตินแต่ละชนิด[106]
ค่าพารามิเตอร์ | อะโทวาสแตติน | เซอริวาสแตติน | ฟลูวาสแตติน | โลวาสแตติน | พิทาวาสแตติน | ปราวาสแตติน | โรสุวาสแตติน | ซิมวาสแตติน |
โปรดรัก (prodrug) |
ไม่ใช่ | ไม่ใช่ | ใช่ | ไม่ใช่ | ไม่ใช่ | ไม่ใช่ | ใช่ | |
---|---|---|---|---|---|---|---|---|
Active metabolite |
ใช่ | ไม่ใช่ | ใช่ | เล็กน้อย | ไม่ใช่ | เล็กน้อย | ใช่ | |
ปริมาณชีวอนุเคราะห์[%] | 12 | 19-29 | 5 | 80 | 18 | 20 | 5 | |
เวลารับประทาน ที่เหมาะสม |
ตอนเย็น | ตอนเย็น | ตอนเช้า หรือ ตอนเย็น และพร้อมอาหาร |
ตอนเย็น | ตอนเย็น | ตอนเช้า หรือ ตอนเย็น |
ตอนเย็น | |
ชีวปริมาณออกฤทธิ์ [%] | 98 | >99 | >95 | 96 | 43-55 | 90 | 95-98 | |
ผลของอาหารต่อ ชีวปริมาณออกฤทธิ์ |
ไม่มีผล | ไม่มีผล | เพิ่ม | ไม่มีผล | เพิ่ม | ไม่มีผล | ไม่มีผล | |
ค่าครึ่งชีวิต[h] | 15-30 | 0.5-2.3 | 2-4 | 11 | 1.3-2.8 | 19 | 2-3 | |
ระยะเวลาที่ระดับ ยาในเลือดขึ้นสูงสุด [h] |
2-3 | 0.5-1 | 2-4 | 11 | 1.3-2.8 | 19 | 2-3 | |
ระดับยาเฉลี่ย ในเลือดสูงสุด [ng/ml] |
27-66 | 448 | 10-20 | 20 | 45-55 | 37 | 10-34 | |
ความชอบไขมัน | ใช่ | ไม่ใช่ | ใช่ | ใช่ | ไม่ใช่ | ไม่ใช่ | ใช่ | |
สัดส่วนที่ขับออก ทางไต [%] |
2 | 6 | 10 | <2 | 20 | 10 | 13 | |
การเปลี่ยนแปลง ที่ตับ |
CYP3A4 | CYP2C8 |
CYP2C9 | CYP3A4 | CYP2C9 | sulfonation | CYP2C9 CYP2C19 |
CYP3A4 |
สัดส่วนที่ขับออก ทางอุจจาระ [%] |
70 | 90 | 83 | 93 | 71 | 90 | 58 | |
การเข้าสู่ระบบ ประสาทส่วนกลาง |
ไม่เข้า | ไม่เข้า | เข้า | ไม่เข้า | ไม่เข้า | ไม่เข้า | เข้า | |
ขนาดยาสูงสุด ต่อวัน [mg] |
80 | 80 | 80 | 4 | 40 | 40 | 80 | |
โปรตีนขนส่งที่ใช้ ในการขับยาออก ทางน้ำดีและเปลี่ยน แปลงยาที่ตับ [107][108][109] |
OATP1B1 |
OATP1B1 |
OATP1B1 |
OATP1A2 |
OATP1B1 |
OATP1A2 |
OATP1B1 |
ยากลุ่มสแตตินทุกชนิด ยกเว้น ปราวาสแตติน จะถูกละลายในกระเพาะอาหารและภายในไซโตพลาสึมของเซลล์[111][112] และเมื่อยาถูกดูดซึมเข้าสู่กระแสเลือดจะถูกเปลี่ยนแปลงอย่างรวดเร็วภายในผนังลำไส้เล็กและตับโดยผ่านเอนไซม์ไซโตโครมพี 450 (cytochrome P450) หลากหลายไอโสเอนไซม์[106] โลวาสแตตินและซิมวาสแตตินซึ่งถูกบริหารเข้าสู่ร่างกายในรูปแบบยาที่ยังไม่สามารถออกฤทธิ์ได้ (inactive drug หรือ prodrug) อาจเกิดปฏิกิริยาการเปลี่ยนแปลงยาได้ทางใดทางหนึ่งต่อไปนี้ คือ เกิดปฏิกิริยาไฮโดรไลสิสของวงแหวนแลคโตน (lactone ring) โดยเอนไซม์เอสเทอรเรส (esterase) หรือเปอรอกซิเดส (peroxidase) จนกลายเป็นยาที่มีหมุ่ไฮดรอกซี่ซึ่งสามารถออกฤทธิ์ได้ หลังจากนั้นยาในรูปแบบที่ออกฤทธิ์ได้นี้ ก็จะถูกเปลี่ยนแปลงโดยไอโสเอนไซม์ซีวายพี 3เอ4 (CYP 3A4) ให้กลายเป็นสารที่ไม่ออกฤทธิ์, และอีกหนึ่งกลไกการเปลี่ยนแปลงยาสแตติน คือ ตัวยาที่ถูกรับประทานเข้าไปจะถูกเปลี่ยนแปลงโดยไอโสเอนไซม์ซีวายพี 3เอ4 (CYP 3A4) ให้กลายเป็นสารที่ไม่ออกฤทธิ์เลย หรืออาจเกิดการเปลี่ยนแปลงผ่านซีวายพี 3เอ5 (CYP 3A5) ให้กลายเป็นสารที่มีฤทธิ์ในการรักษาลดน้อยลง [113] นอกจากนี้แล้ว ยากลุ่มสแตตินนี้ยังสามารถถูกเปลี่ยนแปลงให้กลายเป็นวงแหวนแลคโตนที่มีกลไกการออกฤทธิ์คล้ายคลึงกับโคเอนไซม์เอ แต่กระบวนการการเกิดการเปลี่ยนแปลงดังกล่าวในมนุษย์นั้นจำเป็ต้องอาศัยเอนไซม์ยูดีพี-กลูคิวโรโนซิลทรานส์เฟอเรส (UDP-glucuronosyltransferase; UGT) ซึ่งไม่ใช่กระบวนการหลักในการเปลี่ยนแปลงสแตติน เพราะโดยส่วนใหญ่แล้ว วงแหวนแลคโตนของสแตตินนั้นมักจะถูกเปลี่ยนแปลงโดยเอนไซม์ซีวายพี (CYP450) ได้อย่างรวดเร็ว ส่วนพิทาวาสแตติน, ปราวาสแตติน และโรสุวาสแตตินนั้นจะถูกขับออกจากร่างกายผ่านทางน้ำดีในรูปแบบที่ไม่เปลี่ยนแปลง[113]
รูปแบบการเปลี่ยนแปลงยากลุ่มสแตตินผ่านไซโตโครมพี 450 (cytochrome P450) ที่ตับนั้น ในปัจจุบันสามารถจำแนกรายละเอียดออกเป็นดังนี้:[114]
ตารางต่อไปนี้เป็นตารางแสดงรายละเอียดการเปลี่ยนแปลงของสแตตินภายในร่างกายมนุษย์ รวมไปถึงเอนไซม์ที่ใช้ในการเปลี่ยนแปลงยาแต่ละชนิดด้วย[110]
ค่าพารามิเตอร์ | อะโทวาสแตติน | เซอริวาสแตติน | ฟลูวาสแตติน | โลวาสแตติน | พิทาวาสแตติน | ปราวาสแตติน | โรสุวาสแตติน | ซิมวาสแตติน |
การเกิดเมทาบอลิซึม | +++ | +++ | +++ | ++ | + | + | +++ | |
---|---|---|---|---|---|---|---|---|
จำนวน metabolite ที่ออกฤทธิ์ |
2 | ไม่มี | 3 | ไม่เกี่ยวข้อง | 2 | ไม่เกี่ยวข้อง | 3 | |
ชนิดของ เอนไซม์ CYP |
CYP3A4 CYP2C8 |
CYP2C8 |
CYP2C9 | CYP3A4 CYP3A5 CYP2C8 |
CYP2C9 | CYP3A4 | CYP2C9 CYP2C19 |
CYP3A4 CYP3A5 CYP2C8 |
ชนิดของ เอนไซม์ UGT |
UGT1A1 UGT1A3 UGT2B7 |
UGT1A3 |
UGT1A1 UGT1A3 UGT2B7 |
UGT1A3 UGT2B7 |
UGT1A1 UGT1A3 UGT2B7 | |||
การจับกับ โปรตีน |
SLCO1B1 | SLCO1B1 | SLCO1B1 MC4 |
SLCO1B1 SLCO1B3 |
SLCO1B1 SLCO2B1 OAT3 MCT1 |
SLCO1B1 SLCO1B3 SLCO2B1 SLCO1A2 SLC10A1 |
SLCO1B1 | |
การแทนที่ โปรตีน |
ABCB1 ABCG2 |
ABCC2 ABCG2 |
ABCG2 | ABCB1 | ABCB1 ABCC2 ABCG2 |
ABCB1 ABCB11 ABCC2 ABCG2 |
ABCB1 ABCC2 ABCG2 |
ABCB1 |
สแตตินเป็นยาที่ถูกนำมาใช้เพื่อรักษาภาวะไขมันในกระแสเลือดสูงในเด็กอายุ 6 ปี[115], วัยรุ่น และผู้ใหญ่ เพื่อเป็นการป้องกันปฐมภูมิหรือทุติยภูมิสำหรับการเกิดโรคหลอดเลือดหัวใจ[116] ควบคู่ไปกับการปรับเปลี่ยนพฤติกรม[106] จากข้อมูลที่ได้จากการศึกษาหลายการศึกษาพบว่าการใช้ยากลุ่มสแตตินจะสามารถลดระดับไลโปรโปรตีนชนิดความเข้มข้นต่ำ (LDL) ในกระแสเลือดลงได้ประมาณ 40 mg/dL นอกจากนี้แล้วการใช้สแตตินยังมีผลดีอีกหลายประการ ดังต่อไปนี้: [117]
แนวทางการรักษาโรคไขมันในเลือดสูงของสมาคมหัวใจแห่งสหภาพยุโรป (European Society of Cardiology; ESC) และสมาคมโรคหลอดเลือดแข็งแห่งสหภาพยุโรป (European Society of Atherosclerosis; EAS) ปี ค.ศ. 2011 ได้ให้คำแนะนำในการเลือกใช้ยาเพื่อบำบัดรักษาภาวะความผิดปกติดังกล่าวไว้ ดังแสดงต่อไปนี้:[130][131]
↓ | ||
เลือกวิธีการรักษาเพื่อลดความเสี่ยงต่อการเกิดโรคหลอดเลือดหัวใจ | ||
↓ | ||
กำหนดระดับ LDL เป้าหมาย ตามระดับความเสี่ยงของผู้ป่วยแต่ละราย | ||
↓ | ||
ประเมินร้อยละของ LDL ที่ต้องการลด โดยเทียบกับ LDL พื้นฐานของผู้ป่วย | ||
↓ | ||
เลือกชนิดยาสแตติน | ||
↓ | ||
ประเมินประสิทธิภาพการรักษา/ติดตามปรับขนาดยาให้เหมาะสม | ||
↓ | ||
ประเมินประสิทธิภาพการรักษา/ผลการรักษาซ้ำ |
ระดับความเสี่ยง | ลักษณะทางประชากรศาสตร์ของผู้ป่วย | LDL เป้าหมาย (mg/dl) | LDL เป้าหมาย (mmol/l) |
สูงมาก |
|
<70 | <1,8 |
สูง |
|
<100 | <2,5 |
ปานกลาง |
|
<115 | <3,0 |
น้อย |
|
ไม่สามารถระบุได้ |
ความเสี่ยงของผู้ป่วยที่ยังไม่เคยได้รับการวินิจฉัยว่ามีความเสี่ยงต่อการเกิดโรคหลอดเลือดหัวใจนั้นจะประเมินจากปัจจัยต่างๆ 5 ปัจจัย (เพศ, อายุ, การสูบบุหรี่, ระดับคอเลสเตอรอลในเลือดรวม, และระดับความดันโลหิตขณะหัวใจบีบตัว) ซึ่งจะมีตารางการประเมินความเสี่ยงจากปัจจัยดังกล่าวโดยเฉพาะ[131] โดยประเทศที่มีความเสี่ยงต่อการเกิดโรคหลอดเลือดหัวใจต่ำ ได้แก่ อันดอร์รา, ออสเตรีย, เบลเยียม, ไซปรัส, เดนมาร์ก, ฟินแลนด์, ฝรั่งเศส, กรีซ, สเปน, เนเธอร์แลนด์, ไอร์แลนด์, ไอซ์แลนด์, อิสราเอล, ลักเซมเบิร์ก, มอลตา, โมร็อคโค, เยอรมนี, นอร์เวย์, โปรตุเกส, ซานมารีโน, สโลวีเนีย, สวีเดน, สวิสเซอร์แลนด์ และสหราชอาณาจักร ส่วนประเทศอื่นนอกเหนือจากที่ได้กล่าวมาดังข้างต้นถือว่าเป็นประเทศที่มีความเสี่ยงสูงต่อการเกิดโรคหัวใจและหลอดเลือด อย่างไรก็ตามผลการประเมินของประชากรในประเทศอาร์เมเนีย, อาเซอร์ไบจาน, เบลารุส, บัลแกเรีย, จอร์เจีย, คาซัคสถาน, คีร์กีซสถาน, ลัตเวีย, ลิทัวเนีย, มาซิโดเนีย, มอลโดวา, รัสเซีย, ยูเครน, และอาเซอร์ไบจานนั้นอาจเป็นค่าที่ต่ำกว่าปกติได้[132] |
คะแนนความเสี่ยง ต่อการเสียชีวิต (%) |
ระดับคอเลสเตอรอล (mg/dL) | |||||
---|---|---|---|---|---|---|
<70 | 70–99 | 100–154 | 155–190 | >190 | ||
ระดับคอเลสเตอรอล (mmol/l) | ||||||
<1.8 | 1.8–2.4 | 2.5–3.9 | 4.0–4.8 | >4.9 | ||
<1 | ||||||
1–4 | ||||||
5–9 | ||||||
≥10 | ||||||
ไม่ต้องได้รับการรักษา |
ตามแนวทางการรักษาภาวะไขมันในกระแสเลือดสูงของวิทยาลัยแพทย์โรคหัวใจแห่งสหรัฐอเมริกา (American College of Cardiology; ACC) และสมาคมโรคหัวใจแห่งสหรัฐอเมริกา (American Heart Association; AHA) ค.ศ. 2013 ได้แนะนำให้ใช้สแตตินชนิดที่มีความแรงมาก (high potency statin) ได้แก่ อะโทวาสแตติน 80 มิลลิกรัม หรือโรสุวาสแตติน 20-40 มิลลิกรัม ในการรักษาผู้ป่วยที่มีความเสี่ยงสูงมากต่อการเกิดโรคหัวใจและหลอดเลือด ซึ่งการใช้ยาสแตตินกลุ่มดังกล่าวนั้นจะสามารถลดระดับความเข้มข้นของคอเลสเตอรอลในกระแสเลือดของผู้ป่วยลงได้มากกว่า 50% เมื่อเปรียบเทียบกับค่าก่อนการได้รับการรักษา ส่วนในกรณีที่ไม่สามารถใช้สแตตินชนิดที่มีความแรงมากได้ อาจพิจารณาใช้สแตตินที่มีความแรงปานกลาง (moderate potency statin) ทดแทนได้ ได้แก่ อะโทวาสแตติน 10-20 มิลลิกรัม, โรสุวาสแตติน 5-10 มิลลิกรัม, ซิมวาสแตติน 20-40 มิลลิกรัม, ปราวาสแตติน 40-80 มิลลิกรัม, โลวาสแตติน 40 มิลลิกรัม, ฟลูวาสแตติน เอ็กซ์แอล 80 มิลลิกรัม, ฟลูวาสแตติน 80 มิลลิกรัม, หรือพิทาวาสแตติน 2-4 มิลลิกรัม ซึ่งการใช้ยาสแตตินกลุ่มดังกล่าวนั้นจะสามารถลดระดับความเข้มข้นของคอเลสเตอรอลในกระแสเลือดของผู้ป่วยลงได้ประมาณ 30-49% เมื่อเปรียบเทียบกับค่าก่อนการได้รับการรักษา[134]
ลักษณะทางประชากรของผู้ป่วย | ชนิดของสแตติน ที่แนะนำ | เป้าหมาย LDL ที่ลดลง (%) |
ผู้ป่วยที่เป็นโรคหลอดเลือดหัวใจหรือโรคหลอดเลือดแข็ง | ชนิดความแรงมาก | <50% |
ผู้ป่วยที่มีระดับ LDL >190 mg/dl (4,9 mmol/l) | ชนิดความแรงมาก | <50% |
ผู้ป่วยโรคเบาหวาน อายุ 40–75 ปี ที่มีระดับ LDL-C 70–189 mg/dl (1,8–4,9 mmol/l) แต่ยังไม่เป็นโรคหลอดเลือดหัวใจ | ชนิดความแรงปานกลาง | 30-49% |
ผู้ป่วยที่ไม่เป็นโรคหลอดเลือดหัวใจและไม่เป็นเบาหวาน, อายุ 40–79 ปี, ระดับ LDL-C 70–189 mg/dl (1,8–4,9 mmol/l) ที่มีความเสี่ยงต่อการเกิดโรคหลอดเลือดหัวใจใน 10 ปีข้างหน้า (10 years risk scores for cardiovascular diseases) ≥7,5%. | ชนิดความแรงปานกลาง หรือ ชนิดความแรงมาก |
30-49% หรือ <50% |
โรคกระดูกพรุน (อังกฤษ: Osteoporosis) ตามคำนิยามขององค์การอนามัยโลก (World Health Organization) หมายถึง ภาวะที่มีลดลงของมวลกระดูกและมีการเปลี่ยนแปลงของกระดูกชิ้นเล็กๆ บางๆ (trabeculae) เชื่อมโยงกันเป็นร่างแหภายในกระดูก ซึ่งการเปลี่ยนแปลงนี้จะนำไปสู่ความผิดปกติของโครงสร้างจุลภาคภายในกระดูก (defective bone microstructure) ทำให้กระดูกมีความแข็งแรงลดน้อยลงและเสี่ยงต่อการเกิดการแตกหักได้ง่าย โดยความชุกของการเกิดโรคกระดูกพรุนในประชากรที่มีอายุมากกว่า 50 ปีขึ้นไปคือ 14% โดยมักพบความชุกในเพศหญิงมากกว่าเพศชาย คือ 24% และ 6% ตามลำดับ[135][136] โดยพยาธิกำเนิดของโรคกระดูกพรุนนั้นเกิดจากความผิดปกติของสมดุลระหว่างกระบวนการสร้างและสลายกระดูก ซึ่งมีความสัมพันธ์กับการกับมีอายุที่เพิ่มมากขึ้น ทำให้เกิดกระบวนการสลายกระดูกในอัตราที่มากกว่าการสร้าง ซึ่งปัจจัยเสริมส่วนหนึ่งมาจากการมีระดับฮอร์โมนเพศที่ลดลง (เช่น เอสโทรเจน, เทสโทสเทอโรน) หรือความผิดปกติของการสร้างตัวกระตุ้นการเจริญเติบโตที่มีโครงสร้างคล้ายอินซูลิน (insulin-like growth factor-I; IGF-1) หรือความผิดปกติของสมดุลแคลเซียม-ฟอสเฟตของร่างกาย ซึ่งอาจเกิดได้จากทั้งการรับประทานอาหารที่มีแร่ธาตุเหล่านี้ไม่เพียงพอ, ร่างกายดูดวึมแร่ธาตุดังกล่าวได้น้อยลง, โปรตีนที่ใช้ขนส่งแร่ธาตุดังกล่าวมีปริมาณลดลง, ความเป็นกรดของกระเพาะอาหารลดลง, การสร้างวิตามินดีในรูปแบบที่ออกฤทธิ์ได้ที่ตับและไตผิดปกติ, การได้รับแสงอาทิตย์ไม่เพียงพอ, หรือแม้กระทั่งการมีระดับพาราไทรอยด์ฮอร์โมนที่มากเกินไป[137]
ในปัจจุบัน มียาที่ใช้ในการรักษาโรคกระดูกพรุนหลายชนิด โดยกลไกการออกฤทธิ์ของยาเหล่านี้อาจจะออกฤทธิ์รบกวนกระบวนการสลายกระดูกและการดูดซึมแคลเซียมกลับของร่างกาย เช่น กลุ่มยากลุ่มยาบิสฟอสโฟเนต (Bisphosphonates), ดีโนซูแมบ (denosumab), การรักษาด้วยฮอร์โมนทดแทน (hormone replacement therapy), ยากระตุ้นตัวรับเอสโทรเจนอย่างจำเพาะ (selective estrogen receptor modulators; SERMs); หรือออกฤทธิ์เร่งการสร้างกระดูก เช่น เทอริพาราไทด์ (teriparatide); หรือออกฤทธิ์แบบหลายกลไกผสมกัน เช่น สทรอนเทียม ราเนเลต (strontium ranelate)[138] ส่วนกลไกของสแตตินต่อกระบวนการสร้างและสลายกระดูกนั้นยังไม่สามารถอธิบายได้แน่ชัด[139] และข้อมูลที่ได้จากการศึกษาล่าสุดคาดว่าน่าจะเกิดจากทั้งการส่งเสริมการสร้างมวลกระดูกและยับยั้งการสลายมวลกระดูกร่วมกัน[140] โดยกลไกต่อไปนี้:
ผลการลดความเสี่ยงต่อการเกิดโรคกระดูกพรุนของสแตตินนั้น โดยส่วนใหญ่แล้วพบในสแตตินที่ละลายในไขมัน (เช่น ซิมวาสแตติน, โลวาสแตติน, อะโทวาสแตติน) และสแตตินสังเคราะห์เป็นหลัก (เช่น ฟลูวาสแตติน, โรสุวาสแตติน, อะโทวาสแตติน)[143][144] อย่างไรก็ตาม ผลต่อการลดความเสี่ยงต่อการเกิดโรคกระดูกพรุนนี้ยังสรุปได้ไม่แน่ชัดนัด เนื่องจากการศึกษาในห้องทดลองกับการศึกษาในมนุษย์นั้นให้ผลการศึกษาที่ขัดแย้งกัน[140]
โรคติดเชื้อ (อังกฤษ: Infectious diseases) เป็นกลุ่มโรคที่มีสาเหตุมาจากเชื้อจุลชีพหรือสารพิษที่ถูกหลั่งออกมาจากเชื้อจุลชีพที่เจริญเติบโตในร่างกายมนุษย์ และระบบภูมิคุ้มกันของร่างกายมนุษย์ไม่สามารถกำจัดเชื้อหรือสารพิษเหล่านั้นออกไปได้ทันท่วงที จนทำให้เกิดอาการของโรคติดเชื้อในที่สุด ซึ่งแหล่งที่มาของโรคนี้อาจได้รับเชื้อมาจากสัตว์, พืช, สิงปฏิกูล, สิ่งแวดล้อม, หรือแม้แต่จากมนุษย์ด้วยกันเอง[145]
โดยพยาธิกำเนิดของโรคติดเชื้อนั้นเกิดจากกระบวนการกระตุ้นระบบภูมิคุ้มกันของร่างกายให้มีการหลั่งสารสื่อการอักเสบ (cytokines) ชนิดต่างๆ ออกมา ซึ่งกระบวนการดังกล่าวนั้น สามารถถูกควบคุมได้โดยยากลุ่มสแตติน โดยสแตตินจะไปมีผลลดสารกลุ่มไอโซพรีนอยด์ (isoprenoids) ซึ่งเป็นหนึ่งในสารตั้งต้นที่ใช้ในการสังเคราะห์คอเลสเตอรอล และมีความจำเป็นในกระบวนการปฏิกิริยาพรีนิลเลชั่น (prenylation) ของโปรตีนที่ใช้ในการสื่อสารระหว่างเซลล์เพื่อตอบสนองต่อการอักเสบของร่างกาย[146][147] นอกจากนี้แล้ว สแตตินยังส่งผลต่อการตอบสนองต่อการอักเสบโดยการลดการแสดงออกของยีนที่ทำหน้าที่สร้างโปรตีนเกี่ยวเนื่องกับการอักเสบที่มีชื่อว่า MHC (major histocompatibility complex) class II[147] อย่างไรก็ตาม ผลที่แน่ชัดของสแตตินต่อการเกิดโรคติดเชื้อนั้นยังไม่เป็นที่ทราบเด่นชัดนัก[147] ถึงแม้จะมีการศึกษาบางการศึกษาที่พบว่าการใช้สแตตินจะลดความเสี่ยงต่อการติดเชื้อหรือลดอัตราการเสียชีวิตจากโรคติดเชื้อได้บ้างก็ตาม[146] และโดยทั่วไปแล้ว การรักษาโรคติดเชื้อมักจะเป็นการใช้ยาปฏิชีวนะร่วมกับการรักษาตามอาการมากกว่า จึงทำให้ในปัจจุบันยังคงขาดข้อมูลที่สามารถยืนยันได้แน่ชัดเกี่ยวกับผลสแตตินต่อโรคติดเชื้อต่างๆ[148][149]
โรคปอดอักเสบ (อังกฤษ: Pneumonia) เป็นโรคที่เกิดจากการอักเสบของปอดอันเนื่องมาจากการมีเชื้อจุลชีพในถุงลมของปอด มีการคั่งของน้ำหรือหนองในปอด ทำให้เกิดอาการไอ อาจไอมีเสมหะหรือมีมูกหนอง, ไข้,หนาวสั่น, และหายใจลำบาก[150] โดยในการศึกษาทางคลินิกที่ผ่านมาพบว่า สแตตินมีผลลดความรุนแรงของโรคและลดอัตราการเสียชีวติในผู้ป่วยกลุ่มดังกล่าวลงได้[151][152] โดยเฉพาะในผู้ป่วยโรคปอดอุดกั้นเรื้อรัง (chronic obstructive pulmonary disease; COPD)[152] แต่ไม่มีผลลดอุบัติการณ์การเกิดโรคปอดอักเสบทั้งในโรงพยาบาลและในชุมชน[153]
ไข้หวัดใหญ่ (อังกฤษ: influenza หรือ flu) เป็นโรคติดเชื้อที่เกิดจากไวรัสไข้หวัดใหญ่ ซึ่งผู้ป่วยอาจมีอาการของโรคเพียงเล็กน้อยไปถึงขั้นรุนแรง โดยอาการที่พบบ่อยที่สุด ได้แก่ ไข้สูง, คัดจมูก, เจ็บคอ, ปวดกล้ามเนื้อ, ปวดศีรษะ, ไอและรู้สึกเหนื่อย ซึ่งจะเริ่มมีอาการเหล่านี้ประมาณสองวันหลังได้รับเชื้อและส่วนใหญ่แล้วมักมีอาการนานไม่เกินสัปดาห์ อย่างไรก็ตาม อาการไออาจกินเวลานานกว่าสองสัปดาห์ได้ ในผู้ป่วยเด็กอาจมีคลื่นไส้อาเจียน แต่ไม่ใช่อาการปกติในผู้ใหญ่ อาการแทรกซ้อนของไข้หวัดใหญ่อาจมีปอดบวมจากไวรัส ปอดบวมจากแบคทีเรียตาม โพรงอากาศ (sinus) ติดเชื้อ และปัญหาสุขภาพที่มีอยู่เดิมแย่ลง เช่น โรคหอบหืดหรือภาวะหัวใจล้มเหลว[149]
การศึกษาทางคลินิกที่ผ่านมาพบว่าการใช้สแตตินจะสามารถลดอัตราการเสียชีวิตของผู้ป่วยไข้หวัดใหญ่ที่ต้องเข้ารับการรักษาในโรงพยาบาลได้[154] โดยสแตตินจะไปมีผลลดการเกิดภาวะแทรกซ้อนจากไข้หวัดใหญ่ เช่น ปอดอักเสบจากเชื้อแบคทีเรีย, หลอดเลือดสมองอุดกั้น, และภาวะหัวใจวายเฉียบพลัน เป็นต้น[147]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.