Loading AI tools
จำนวนธรรมชาติ จากวิกิพีเดีย สารานุกรมเสรี
2 (สอง) เป็นจำนวน ตัวเลข และเป็นชื่อของสัญลักษณ์ภาพ เป็นจำนวนธรรมชาติที่อยู่ถัดจาก 1 (หนึ่ง) และอยู่ก่อนหน้า 3 (สาม)
ส่วนนี้รอเพิ่มเติมข้อมูล คุณสามารถช่วยเพิ่มข้อมูลส่วนนี้ได้ |
เลขสองมีสมบัติหลายอย่างในคณิตศาสตร์[2] จำนวนเต็มที่เรียกว่าจำนวนคู่จะหาร 2 ลงตัว สำหรับจำนวนเต็มที่เขียนในระบบตัวเลขจะยึดจากจำนวนคู่ เช่น เลขฐานสิบ และเลขฐานสิบหก การหารสองสามารถตรวจสอบได้ง่ายเพียงดูที่ตัวเลขหลักสุดท้าย ถ้าเป็นจำนวนคู่ ตัวเลขทั้งจำนวนจะเป็นจำนวนคู่ เมื่อเขียนในระบบเลขฐานสิบผลคูณของสองทั้งหมดจะลงท้ายด้วย 0, 2, 4, 6 หรือ 8
เลขสองเป็นจำนวนฟิโบนักชีลำดับที่สาม และเป็นจำนวน Perrin ลำดับที่ห้า
สองเป็นจำนวนเฉพาะที่น้อยที่สุด เป็นจำนวนแรก และเป็นจำนวนคู่เพียงจำนวนเดียว[3] (ด้วยเหตุนี้บางครั้งจึงมีคนเรียกว่าเป็น "จำนวนเฉพาะที่แปลกที่สุด") [4] จำนวนเฉพาะถัดไปคือสาม สองและสามเท่านั้นที่เป็นจำนวนเฉพาะที่ติดกัน 2 เป็นจำนวนเฉพาะโซฟี เจอร์เมนจำนวนแรก เป็นจำนวนเฉพาะแฟกทอเรียลจำนวนแรก เป็นจำนวนเฉพาะลูคัสจำนวนแรก เป็นจำนวนเฉพาะรามานุจันจำนวนแรก และเป็นจำนวนเฉพาะ Smarandache-Wellin จำนวนแรก สองยังเป็นจำนวนเฉพาะไอเซนสไตน์ที่ไม่มีส่วนจินตภาพและส่วนจริงของพจน์ สองยังเป็นจำนวนเฉพาะสเติร์น จำนวนเพลล์ จำนวนเฉพาะฟิโบนักชีจำนวนแรก และเป็นจำนวนมาร์คอฟ ปรากฏในหลายคำตอบของสมการมาร์คอฟ ดิโอแฟนไทน์ที่เกี่ยวข้องกับจำนวนเพลล์
สำหรับจำนวน x ใด ๆ
สองมีคุณสมบัติโดดเด่นว่า 2+2 = 2·2 = 2²=2↑↑2=2↑↑↑2 เป็นเช่นนี้ไปเรื่อย ๆ ไม่ว่าการดำเนินการจะซับซ้อนขึ้นเท่าใด
โดยทั่วไป:
สองเป็นจำนวน x จำนวนเดียวที่ผลรวมของส่วนกลับของกำลังของ x เท่ากับตัวเอง จากสมการ
นี่มาจากข้อเท็จจริงว่า
กำลังของสองเป็นศูนย์กลางของแนวคิดของจำนวนเฉพาะแมร์แซน และสำคัญต่อวิทยาการคอมพิวเตอร์ สองเป็นเลขชี้กำลังเฉพาะแมร์แซนจำนวนแรก
การใส่เครื่องหมายรากที่สองครอบจำนวนใด ๆ เป็นการดำเนินการทางคณิตศาสตร์ที่พบได้ทั่วไป จะไม่เขียนเลขกำกับที่เครื่องหมายราก เนื่องจากถือว่าเป็นปริยาย แต่ในกรณีที่เป็นรากที่สามหรือรากอื่น ๆ จะเขียนตัวเลขนั้น ๆ กำกับไว้ที่เครื่องหมายราก
รากที่สองของสอง เป็นจำนวนอตรรกยะจำนวนแรกที่เป็นที่รู้จัก
ฟีลด์ที่เล็กที่สุดมีสมาชิกสองตัว
สองเป็นคำตอบของปัญหาควีน n ตัว โดยที่ n = 4 มีข้อยกเว้นคือ คำตอบของปัญหาของ Znám เริ่มด้วย 2
สองมีสมบัติโดดเด่น เช่นว่า
ในปริภูมิ n มิติ สำหรับ n ใด ๆ จุดสองจุดที่ห่างกันจะกำหนดเส้นตรงหนึ่งเส้น
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.