คำถามยอดนิยม
ไทมไลน์
แชท
มุมมอง

จำนวน

จากวิกิพีเดีย สารานุกรมเสรี

Remove ads
Remove ads

จำนวน (อังกฤษ: number) คือวัตถุนามธรรมที่ใช้สำหรับอธิบายปริมาณ จำนวนมีหลายแบบ จำนวนที่เป็นที่คุ้นเคยก็คือ

  • จำนวนธรรมชาติ {1,2,3,...} ที่เขียนแทนด้วยว่า N
  • ถ้ายอมให้มีจำนวนเต็มลบ ก็จะได้ จำนวนเต็ม หรือที่เขียนแทนด้วย Z
  • อัตราส่วนระหว่างจำนวนเต็มเรียกว่า จำนวนตรรกยะ หรือเศษส่วน โดยที่เซตของจำนวนตรรกยะทั้งหมดเขียนแทนด้วย Q
  • ในการแสดงจำนวนด้วยระบบตัวเลขทศนิยม ถ้ารวมจำนวนที่มีจำนวนหลักไม่จำกัดและไม่จำเป็นต้องมีการซ้ำกันของทศนิยมเข้าไปด้วย จะได้จำนวนจริง หรือ R
  • จำนวนจริงที่ไม่เป็นจำนวนตรรกยะเรียกว่า จำนวนอตรรกยะ
  • จำนวนจริงสามารถขยายเป็น จำนวนเชิงซ้อน หรือ C ที่ทำให้เกิดฟิลด์ปิดเชิงพีชคณิตที่ทุก ๆ พหุนาม ที่มีสัมประสิทธิ์เป็นจำนวนเชิงซ้อน สามารถแยกตัวประกอบได้อย่างสมบูรณ์
  • จำนวนเชิงซ้อนที่เป็นรากหรือคำตอบของสมการพหุนาม ที่มีสัมประสิทธิ์เป็นจำนวนตรรกยะ เรียกว่า จำนวนเชิงพีชคณิต
  • จำนวนเชิงซ้อนที่ไม่ใช่จำนวนเชิงพีชคณิตเรียกว่า จำนวนอดิศัย (transcendental number)

ตัวอักษรสัญลักษณ์ข้างต้น มักเขียนให้เป็นอักษรแบบกระดานดำ นั่นคือ

จำนวนเชิงซ้อน สามารถขยายเป็น ควอเทอร์เนียน แต่การคูณในระบบควอเทอร์เนียนนั้น ไม่มีคุณสมบัติการสลับที่ ในลักษณะเดียวกัน ออคโนเนียน คือ ส่วนขยายของควอเทอร์เนียน แต่ในครั้งนี้ คุณสมบัติการเปลี่ยนหมู่ จะสูญเสียไป ระบบพีชคณิตการหารที่มีมิติจำกัด และมีคุณสมบัติการเปลี่ยนหมู่บน R คือจำนวนจริง จำนวนเชิงซ้อน และควอเทอร์เนียน เท่านั้น สมาชิกของฟีลด์ฟังก์ชันเชิงพีชคณิตที่มีแคแรกเทอริสติกจำกัดมีลักษณะหลาย ๆ ประการคล้ายคลึงกับจำนวน ทำให้นักทฤษฎีจำนวนมักพิจารณาให้เป็นจำนวนประเภทหนึ่ง

ในทางคณิตศาสตร์ จำนวนนั้นแตกต่างจากตัวเลข ซึ่งเป็นกลุ่มของสัญลักษณ์ที่ใช้แทนจำนวน รูปแบบการเขียนจำนวนด้วยตัวเลขหลาย ๆ หลักถูกอธิบายในระบบตัวเลข

ผู้คนมักนิยมกำหนดจำนวนให้กับวัตถุต่าง ๆ เพื่อสร้างชื่อเฉพาะ ซึ่งมีแผนการให้หมายเลขอยู่หลายแบบ

Remove ads

ส่วนขยาย

สรุป
มุมมอง

ส่วนขยายในที่นี้หมายถึงการขยาย จำนวนมาตรฐาน (โดยปกติหมายถึงจำนวนจริงหรือจำนวนเชิงซ้อน) ออกไปให้ครอบคลุม จำนวนชนิดอื่นๆ มากยิ่งขึ้น

  • จำนวนซูเปอร์เรียล (Superreal) และ จำนวนไฮเพอร์เรียล (hyperreal), ได้นิยามจำนวนอนันต์ และ จำนวนกณิกนันต์เพิ่มเติมในระบบจำนวนจริง
  1. จำนวนกณิกนันต์ (infinitesimal number) จำนวนประเภทนี้ ในกรณีเป็นจำนวนบวก หมายถึง "จำนวนที่เล็กกว่าจำนวนจริงบวกทุกตัวแต่ใหญ่กว่าศูนย์" ส่วนกรณีที่เป็นจำนวนลบหมายถึง "จำนวนที่ใหญ่กว่าจำนวนจริงลบทุกตัวแต่น้อยกว่าศูนย์"
  2. จำนวนอนันต์ (infinite number) จำนวนประเภทนี้หมายถึง "จำนวนที่ใหญ่กว่าจำนวนจริงทุกตัว" ในกรณีเป็นจำนวนบวก หรือ "จำนวนที่เล็กกว่าจำนวนจริงทุกตัว" ในกรณีเป็นจำนวนลบ

การเพิ่มจำนวนสองประเภทนี้เข้าไปในระบบจำนวนมาตรฐาน มีผลให้แคลคูลัสตามแนวคิดดั้งเดิมของไลบ์นิซสามารถพิสูจน์อย่างเคร่งครัดได้

นอกจากนี้ยังมีจำนวนเซอร์เรียล (surreal number)ที่ถูกนิยามโดยจอห์น คอนเวย์ จำนวนเซอร์เรียลครอบคลุมจำนวนไฮเพอร์เรียลและยังมีจำนวนชนิดอื่น ๆ เพิ่มเติมมากขึ้นไปอีก

  • ในขณะที่จำนวนจริง (ส่วนใหญ่) มีส่วนขยายไปทางด้านขวา (ทศนิยม) ที่มีความยาวไม่จำกัด สามารถลองให้จำนวนมีส่วนขยายไปทางด้านซ้ายที่มีความยาวไม่จำกัดในฐาน เมื่อ เป็นจำนวนเฉพาะ การขยายดังกล่าวจะทำให้ได้จำนวน p-แอดิก
  • สำหรับการจัดการกับเซตที่มีจำนวนสมาชิกไม่จำกัด จำนวนธรรมชาติถูกทำให้มีนัยทั่วไปเป็นจำนวนเชิงอันดับที่ (ordinal number) สำหรับระบุลำดับในเซต และจำนวนเชิงการนับ (cardinal number) สำหรับระบุขนาด (ในกรณีของเซตจำกัด จำนวนเชิงอันดับที่และจำนวนเชิงการนับจะเหมือนกัน ความแตกต่างจะเกิดขึ้นในกรณีของเซตไม่จำกัดเท่านั้น)

การดำเนินการทางพีชคณิตของจำนวน เช่น การบวก การลบ การคูณ และ การหาร ถูกทำให้มีนัยทั่วไปในสาขาของคณิตศาสตร์ ที่เรียกว่า พีชคณิตนามธรรม ทำให้ได้กรุป ริง และฟิลด์

Remove ads

อ้างอิง

Loading content...

ดูเพิ่ม

แหล่งข้อมูลอื่น

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads