மனிதனைப் போல சிந்திக்கும் திறன் கொண்ட கணினி மற்றும் மென்பொருள் From Wikipedia, the free encyclopedia
செயற்கை நுண்ணறிவு அல்லது செயற்கை அறிதிறன் ((Artificial intelligence)) (AI) மனிதனுக்கு இயந்திரத்திற்கும் இடையில் காணப்படும் வேறுபாடு என்னவென்றால் படைப்பாக்க திறன் ஆகும் . இந்த படைப்பாக்க திறன் இயந்திரங்கள் மூலமும் சாத்தியப்படுமானால் அதுவே செயற்கை நுண்ணறிவு என அழைக்கப்படுகிறது.கணினி அறிவிகயலின் பரந்த கிளையாக செயற்கை நுண்ணறிவு காணப்படுகிறது. பொதுவாக மனித நுண்ணறிவு தேவைப்படும் பணிகளைச் செய்யும் திறன் கொண்ட இயந்திரங்களை உருவாக்க செயற்கை நுண்ணறிவின் பங்கு பெருமளவில் தேவைப்படுகிறது.இச் செயற்கை நுண்ணறிவு திட்டமிடல் சிந்தித்தல் எண்ணங்களை கற்றுக் கொள்ளுதல் என பல்வேறு நுண்ணறிவு திறங்களை உள்ளடக்கியுள்ளது. நுண்ணறிவுப் பயன்பாடுகளில் மேம்பட்ட வலைத் தேடுபொறிகள் (எ. கா. கூகுள் தேடல்) பரிந்துரை அமைப்புகள், (யூடியூப், அமேசான், நெட்பிளிக்சு) மனித பேச்சைப் புரிந்துகொள்வது (சிரி, அலெக்சா போன்றவை), தானோட்டிச் சீருந்துகள், (எ.கா, வேமோ குழும ஊர்திகள்), பொது அறிதிறன் உருவாக்கும் ஆக்கக் கருவிகள் (அரட்டைGPT, செயற்கை அறிதிறன் கலை), உயர்நிலை ஆட்ட நுட்ப விளையாட்டுகளில் போட்டியிடல்(சதுரங்கம்), Go) போன்றவை உள்ளடங்கும்.
இந்தக் கட்டுரையில் சான்றுகள் தரும் முறை தெளிவில்லாமல் உள்ளது. மேற்சான்றுகளை மேற்கோளிடப்படும் வரிகளின் அண்மையில் தெளிவாக தருதல் வேண்டும். பல பாணிகளில் மேற்சான்றுகளை எவ்வாறு தருவது என அறிய வரியிடைச் சான்று, அடிக்குறிப்பு, அல்லது வெளி இணைப்புகள் உதவிப் பக்கங்களைக் காணவும். (திசம்பர் 2023) |
செயற்கை நுண்ணறிவு 1956 ஆம் ஆண்டில் ஒரு கல்வித் துறையாக டார்த்மவுத்து பணிப்பட்டறையில் நிறுவப்பட்டது.[1] இந்தத் துறை பலவிதமான நம்பிக்கைக் சுழற்சிகளைச் சந்தித்ததோடு, அதைத் தொடர்ந்து ஏமாற்றமும் நிதி இழப்பும் கூட அடைய நேர்ந்தது. ஆனால் 2012 ஆம் ஆண்டுக்குப் பிறகு ஆழமான கற்றல் முந்தைய அனைத்து செயற்கை அறிதிறன் நுட்பங்களையும் மிஞ்சியபோது, நிதி வளத்தோடு ஆர்வமும் குவிந்தது.[2][3][4][5][6]
செயற்கை நுண்ணறிவு ஆராய்ச்சியின் பல்வேறு துணைத் துறைகளையும் குறிப்பிட்ட குறிக்கோள்களையும் குறிப்பிட்ட கருவிகளின் பயன்பாட்டையும் மையமாகக் கொண்டுள்ளன. செயற்கை நுண்ணறிவு ஆராய்ச்சியின் மரபான குறிக்கோள்களாவன பகுத்தறிவு, அறிவு உருவாக்கப்படுத்தல், திட்டமிடல், கற்றல், இயற்கை மொழிச் செயலாக்கம், புலக்காட்சி தானியங்கி ஆகியவை அடங்கும்.[7] இந்த சிக்கல்களைத் தீர்க்க, செயற்கை நுண்ணறிவு ஆராய்ச்சியாளர்கள் தேடல், கணித உகப்பாக்கம், முறையான தருக்கம், செயற்கை நரம்பியல் வலைப்பின்னல் ஆகிய சிக்கல் தீர்வு முறைகளையும் புள்ளியியல், நிகழ்தகவு, பொருளியல் சார்ந்த முறைகளையும் தழுவி ஒருங்கிணைத்துள்ளனர்.[1]
உருவகப்படுத்துதல் (அல்லது நுண்ணறிவை உருவாக்குதல்) பற்றிய பொதுவான சிக்கல், துணை சிக்கல்களாக பிரிக்கப்பட்டன. இந்தத் துணைச் சிக்கல்கள் என்பவை ஒரு அறிவுபொதிந்த அமைப்பு வெளிப்படுத்த வேண்டும் என்று ஆராய்ச்சியாளர்கள் எதிர்பார்க்கும் குறிப்பிட்ட பண்புகள் அல்லது திறன்களாகும். கீழே விவரிக்கப்பட்டுள்ள திறன்கள் மிகவும் கவனத்தை ஈர்த்துள்ளதோடு, செயற்கை அறிதிறன் ஆராய்ச்சியின் நோக்கத்தையும் இலக்குகளையும் உள்ளடக்கியுள்ளன.
தொடக்க கால ஆராய்ச்சியாளர்கள் மாந்தர்கள் புதிர்களைத் தீர்க்கும்போது அல்லது அளவையியலான(தர்க்கவியலான) விதிவிலக்குகளைச் செய்யும்போது படிப்படியான பகுத்தறிவைப் பின்பற்றும் வழிமுறைகளை உருவாக்கினர். 1980களின் பிற்பகுதியிலும் 1990களிலும் பொருளாதாரத்திலிருந்தான கருத்துகளைப் பயன்படுத்தி, உறுதியற்ற அல்லது முழுமையற்ற தகவல்களைக் கையாள்வதற்கான வழிமுறைகள் உருவாக்கப்பட்டன.
இந்த வழிமுறைகளில் பல பெரிய பகுத்தறிவு சிக்கல்களைத் தீர்க்க போதுமானதாக இல்லை. ஏனெனில் அவை தீர்வின் போக்கில் ஓர் ஒருங்கிணைந்த வெடிப்பைச் சந்திக்கின்றன. சிக்கல்கள் பெரிதாக வளர வளர அவை படிப்பெருக்கமுறையில் செயல் வேகத்தில் மெதுவானவையாக மாறின. தொடக்கநிலை செயற்கை அறிதிறன் ஆராய்ச்சியைப் போன்ற படிப்படியான கொணர்தலை மாந்தர் கூட அரிதாகவே பயன்படுத்துகிறார்கள். அவர்கள் தங்கள் பெரும்பாலான சிக்கல்களை விரைவான உள்ளுணர்வு தீர்ப்புகளைப் பயன்படுத்தியே தீர்க்கிறார்கள். துல்லியமான முழுத்திறமையான பகுத்தறிவு என்பது தீர்க்கப்படாத ஒரு சிக்கலாகவே இன்னமும் உள்ளது.
அறிவு உருவகப்படுத்தலும் அறிவுப் பொறியியலும்[8] AI நிரல்களை புத்திசாலித்தனமாக கேள்விகளுக்கு பதிலளிக்கவும், நிஜ உலக உண்மைகளைப் பற்றிய கொணர்வுகளைச் செய்யவும் வழிவகுக்கின்றன. முறையான அறிவு உருவகங்கள் உள்ளடக்க அடிப்படையிலான பொருள்சுட்டிலும் மீட்பிலும் காட்சி விளக்கம் மருத்துவ முடிவெடுப்பு ஒத்துழைப்பு, 17 அறிவு கண்டுபிடிப்பு (பெரிய தரவுத்தளங்கள் மற்றும் பிற பகுதிகளிலிருந்து ஆர்வமுள்ள, செயல்படுத்தக்கூடிய உய்த்துணர்வுகள்) இன்னும் பிற பகுதிகளிலும் பயன்படுத்தப்படுகின்றன.
அறிவு அடிப்படை என்பது ஒரு நிரலால் பயன்படுத்தக்கூடிய வடிவத்தில் குறிப்பிடப்படும் அறிவின் தொகுப்பாகும். இருப்பியல் என்பது அறிவுசார் களத்தால் பயன்படுத்தப்படும் பொருள்கள், உறவுகள், கருத்துப் படிமங்கள், இயல்புகளின் தொகுப்பாகும். மிகவும் பொதுவான இருப்பியல்கள் உயர் இருப்பியல்கள்கள் என்று அழைக்கப்படுகின்றன. அவை மற்ற அனைத்து அறிவுக்கும் அடித்தளத்தை வழங்க முயல்வதோடு, ஒரு குறிப்பிட்ட களத்தைப் பற்றிய குறிப்பிட்ட அறிவை உள்ளடக்கிய கள இருப்பியலுக்கு இடைநிலைகளாகச் செயல்படுகின்றன.
அறிவு அடிப்படைகள், பொருள்கள், இயல்புகள், கருத்தினங்கள், பொருளிடையிலான உறவுகள் போன்றவை, சூழல்கள், நிகழ்ச்சிகள், நிலைகள், காலம் போன்றவை; முதல்களும் விளைவுகளும் போன்றவை; அறிவைப் பற்றிய அறிவையும் மேலும் பல அறிவுக்களங்களையும் கூறுபாடுகளையும் தெளிவாகக் குறிப்பிட வேண்டும் [9][10][11][12][13]
KR இல் உள்ள மிகவும் கடினமான சிக்கல்களில் பின்வருவன அடங்கும். பொதுப்புலன் அறிவின் அகலம் (சராசரி நபருக்குத் தெரிந்த அலகு உண்மைகளின் தொகுப்பு) பன்முகமானது. அறிவடைவதில் உள்ள சிக்கலும் பெரும்பாலான பொதுப்புலன் அறிவின் துணை குறியீட்டு வடிவமும் (மக்களுக்குத் தெரிந்தவற்றில் பெரும்பாலானவை, அவை வாய்மொழியாக வெளிப்படுத்த முடிந்த. "உண்மைகள்" அல்லது "கூற்றுகள்" என்று குறிப்பிடமுடியாதனவாகும்).[14][15]
தன்னியக்க முறையில் திட்டமிடலும் தானாகவே முடிவெடுத்தலும் தன்னியக்கத் திட்டமிடல் செயற்கை நுண்னறிவின் கூறுகளாகும்.
எந்திரக் கற்றல் என்பது ஒரு குறிப்பிட்ட இலக்குப் பணியில் தானாகவே தங்கள் செயல்திறனை மேம்படுத்தக்கூடிய வழிநிரல்களைப் பற்றிய ஆய்வு ஆகும்.[16] இது தொடக்கத்தில் இருந்தே, செயற்கை நுண்ணறிவின் ஒரு பகுதியாக இருந்து வருகிறது.
எந்திரக் கற்றலில் பல வகைகள் உள்ளன. இவற்றில் ஒன்றான மேற்பார்வை செய்யப்படாத கற்றல் என்பது தரவுகளின் ஓட்டத்தை பகுப்பாய்வு செய்து வடிவங்களைக் கண்டறிந்து வேறு எந்த வழிகாட்டலும் இல்லாமல் கணிப்புகளைச் செய்கிறது.[17]
மேற்பார்வை செய்யப்படும் கற்றல் என்பது ஒருவர் உள்ளீட்டு தரவை முதலில் பெயரிட வேண்டும். பெயரிடல் இரண்டு முதன்மை வகைகளில் அமைகிறது. ஒன்று. வகைப்பாடு (இதில் நிரல் உள்ளீடு எந்த வகையைச் சேர்ந்தது என்பதைக் கணிக்க கற்றுக்கொள்ள வேண்டும்) ஆகும்; அடுத்தது, கண்டறிதல் ( இதில் நிரல் எண் உள்ளீட்டின் அடிப்படையில் அதற்கான செயல்பாட்டின் எண்ணைக் கண்டறிய வேண்டும்) ஆகும்.[18]
வலுவூட்டல் கற்றலில் முகவர் சரியான பதில்களுக்குப் பரிசு அளிக்கப்படுகிறார். அதேபோல, தவறான பதில்களுக்குத் தண்டிக்கப்படுகிறார். இதனால், முகவர் "சரி" என வகைப்படுத்தப்பட்ட பதில்களைத் தேர்வு செய்ய கற்றுக்கொள்கிறார்.
பரிமாற்றக் கற்றல் என்பது ஒரு சிக்கலில் இருந்து பெறப்பட்ட அறிவை மற்றொரு புதிய சிக்கலுக்குப் பயன்படுத்தக் கற்றல் ஆகும்.
ஆழமான கற்றல் இந்த வகையான கற்றல் அனைத்திற்கும் செயற்கை நரம்பியல் அலைப்பின்னல்களைப் பயன்படுத்துகிறது.
கணிணிமுறைக் கற்றல் கோட்பாடு என்பது கணிப்புசார் சிக்கலை வைத்து, அதாவது, எவ்வளவு தரவு தேவைப்படுகிறது என்பதையோ அல்லது உகப்பாக்கத்தின் பிற கருத்துக்களையோ வைத்து, கற்பவர்களை மதிப்பிடும் கோட்பாடாகும்.[19]
இயற்கை மொழி செயலாக்கம் நிரல்களை ஆங்கிலம் போன்ற மனித மொழிகளில் எழுதவும் தொடர்பு கொள்ளவும் வழிவகுக்கிறது. இதன் குறிப்பிட்ட சிக்கல்களில் பேச்சு உணர்தல், பேச்சு உருவாக்கம், எந்திர மொழிபெயர்ப்பு, தகவல் பிரித்தெடுத்தல், தகவல் மீட்டெடுத்தல், கேள்விக்குப் பதில்சொல்லுதல் ஆகியவை அடங்கும்.
நோம்சோம்சுகியின் ஆக்கமுறை இலக்கணத்தை அடிப்படையாகக் கொண்ட தொடக்க கால படைப்புகளில், நுண்ணுலகங்கள் (பொதுப்புலன் அறிவின் அகல்விரிவுச் சிக்கல் காரணமாக) எனப்படும் சிறிய களங்களுக்கு கட்டுப்படுத்தப்படாத, சொற்பொருள் குழப்பச் சிக்கல் இருந்தது.[14]
இயற்கை மொழிச் செயலாக்கத்துக்கான புதுப்புதுப் புள்ளியியல், ஆழ்கற்றல் நுட்பங்களில் சொல் பொருட்பொதிவு(பொருள்குறிப்பு) அடங்கும் (எப்படியும் பெரும்பாலும் ஒரு சொல் மற்றொரு பொருள்மாற்றிகளுக்கு நெருக்கமாகத் தோன்றும். இதற்கு உரைபொருள் நவில்பொருள் வடிவங்களைக் கண்டறிதல் வேண்டும்.[20] 2019 ஆம் ஆண்டில், உருவாக்கத்துக்கு முன் பயிற்சி பெற்ற பொருள்மாற்றி மொழிப் படிமங்கள் ஓரளவு ஒத்திசைவான பனுவலை உருவாக்கத் தொடங்கின; மேலும் 2023 ஆம் ஆண்டளவில் இந்தப் படிமங்கள் பார், சேட், ஜிஆர் இ, போன்ற பிற தேர்வுகளில் மாந்தநிலை மதிப்பெண்களைப் பெற முடிந்தது.
எந்திரப் புலன்காட்சி என்பது உலகின் கூறுபாடுகளைக் கண்டறிய, உணரிகளின் (ஒளிப்படக்கருவிகள், ஒலிவாங்கிகள், கம்பியில்லா குறிகைகள், செயலுறு ஒளிமி, ஒலிமி, வீவாணி(கதிர்மி), தொட்டுணரிகள் போன்றவற்றின்) உள்ளீடுகளைப் பயன்படுத்தும் திறன் ஆகும். எந்திரப் பார்வை அல்லது கணினிப் பார்வை என்பது காட்சி உள்ளீட்டைப் பகுப்பாய்வு செய்யும் திறன் ஆகும்.[21] இப்புலத்தில் பேச்சுணர்தல், படிம வகைப்படுத்தல், முக மெய்ப்பாடு, பொருள்குறிப்பு அறிதல், எந்திரன் புலன்காட்சி ஆகியன அடங்கும்
எந்திரனியல்[22] செயற்கை அறிதிறனைப் பயன்படுத்துகிறது.
உணர்திறக் கணிப்பு என்பது மனித உணர்வு, உணர்ச்சி, மனநிலையை அறிந்து விளக்கி, செயல்படுத்தி உருவகப்படுத்தும் ஒரு இடைநிலை குடையாகும்.[23] எடுத்துக்காட்டாக, சில மெய்நிகர் எந்திரன்வகை உதவியாளர்கள் உரையாடலாக பேசவோ அல்லது நகைச்சுவையாக கேலி செய்யவோ திட்டமிடப்பட்டுள்ளனர். மாந்த ஊடாட்ட உணர்ச்சி இயங்கியலுக்கு உயர்ந்த உணர்திறன் கொண்டதாகத் தோன்றுகிறது அல்லது மாந்த, கணினி ஊடாட்டங்களை இயலுவதாக்குகிறது. இருப்பினும், இது அப்பாவி பயனர்களுக்குத் தற்போதுள்ள கணினி முகவர்கள் உண்மையில் எவ்வளவு அறிவாளிகள் என்பதைப் பற்றிய நம்பத்தகாத கருத்தை அளிக்க முனைகிறது. உணர்திறக் கணிப்பு சார்ந்த மிதமான வெற்றிகளில், பனுவல் உணர்ச்சிப் பகுப்பாய்வும் மிக அண்மையில் உருவாகிய பன்முறைமை உணர்ச்சிப் பகுப்பாய்வும் அடங்கும். இதில் செயற்கை அறிதிறன் காணொலி நாடா செய்திறக் கருப்பொருள்வழி காட்டப்படும் உணர்திறங்களை வகைப்படுத்துகிறது.
செயற்கைப் பொது நுண்ணறிவுள்ள எந்திரம் மாந்த நுண்ணறிவைப் போலவே அகல்விரிவான பல்வகைச் கிக்கல்களை ஆழமாகவும் பல்துறை திறனுடனும் தீர்க்க முடியும்.[7]
செயற்கை அறிதிறன் ஆராய்ச்சி, மேலுள்ள இலக்குகளை நிறைவேற்ற அகல்விரிவான பல்வகைக் கருவிகளையும் வழிமுறைகளையும் பயன்படுத்துகிறது.
செயற்கை நுண்ணறிவு பல வாய்ப்புள்ள தீர்வுகளை அறிவார்ந்த முறையில் தேடுவதன் மூலம் பல சிக்கல்களை தீர்க்க முடியும்.[24] செயற்கை அறிதிறனில் நிலை-வெளி தேடல், களத் தேடல் ஆகிய இரண்டு வெவ்வேறு வகையான தேடல்கள் பயன்படுகின்றன.
ஒரு இலக்கு நிலையை முயன்று கண்டுபிடிக்க, நடப்பில் இயலும் நிலைகளின் தொகுப்பின்வழி நிலை-வெளி தேடல் வழிமுறை தேடுகிறது.[25] எடுத்துக்காட்டாக, இலக்குகள், துணை இலக்குகளின் தொகுப்புவழி கணினிநிரல் தேடல்களைத் திட்டமிடல், குறிக்கோள் இலக்கை அடையும் தடவழியை கண்டுபிடிக்க முயலுதல்போன்ற வழிமுறைகளைத் தேடுகின்றன. இம்முறை முடிவுநோக்கிய கருவிப் பகுப்பாய்வு எனப்படுகிறது.
தகவலிலா தேடல், முதல் அகல்வு தேடல், முதல் ஆழ்தேடல், பொது நிலை-வெளி தேடல் போன்ற எளிய முழுமையான தேடல்கள்[26] பெரும்பாலான இயல் உலகச் சிக்கல்களுக்குப் போதுமானவையாக அமைவதில்லை. இதன் தேடல்வெளி(தேடும் இட எண்ணிக்கை) மிகப் பாரியதாகிறது. இதன்விளைவாக இது மிகவும் மெதுவானதாக அல்லது ஒருபோதும் முடிக்கப்படாத தேடலாகி விடுகிறது.[27] "உய்த்துணர்வியல்" அல்லது "கட்டைவிரல் விதிகள்" ஒரு இலக்கை அடைய மிகுந்த வாய்ப்புள்ள தேர்வுகளுக்கு முன்னுரிமை அளிக்க உதவும்.[28]
சதுரங்கம் அல்லது கோ போன்ற விளையாட்டுத் திட்டங்களுக்கு எதிர்முறைத் தேடல் பயன்படுத்தப்படுகிறது. இது ஒரு வெற்றி நிலையைத் தேடும் வாய்ப்புள்ள நகர்வுகள், எதிர் நகர்வுகளின் தொகுப்பு வழியாகத் தேடுகிறது.[29]
களத் தேடல் ஒரு சிக்கலுக்கான ஒரு எண்ணியல் தீர்வைக் கண்டறிய கணித உகப்பாக்கத்தை பயன்படுத்துகிறது. இது ஒருவித ஊகத்துடன் தொடங்கி , அதைச் சீராக்குகிறது. பின்னர் மேலும் சீராக்க இயலாதவரை அந்த ஊகத்தைச் சீராக்கி கொண்டே வருகிறது. இந்தக் கணினி நிரலைக் குருட்டாம்போக்கு மலையேற்றமாகக் கருதலாம். களத்தில் ஒரு தன்வாய்ப்புப் புள்ளியில் புள்ளியியல் தேடலைத் தொடங்குகிறோம். பின்னர் தாவல்கள் அல்லது படிநிலைகள் ஊடாக நாம் மேலே செல்லும் வரை நம் ஊகத்தை உச்சி எய்தும் வரை தொடர்ந்து நகர்த்துகிறோம். இந்த செயல்முறை தன்வாய்ப்பு படிநிலை இறக்கம் என்று அழைக்கப்படுகிறது.[30]
படிமலர்ச்சிக் கணிப்பு என்பது உகப்பாக்க முறைத் தேடலின் ஒரு வடிவத்தைப் பயன்படுத்துகிறது. எடுத்துக்காட்டாக, இதில் குறிப்பிட்ட எண்ணிக்கை உயிரினத் திரளில்(ஊகம்) தொடங்கலாம். பின்னர், அவற்றை வேறுபடவும் இணையவும் விட்டு, ஒவ்வொரு தலைமுறையிலும் உயிர்வாழ தகுந்தவற்றைத் தேர்ந்தெடுக்கலாம்(ஊகச் சீராக்கம்)[31]
சீர்பரவல்நிலைத் தேடல் செயல்முறைகளைத் திரள் நுண்ணறிவு கணினிநிரல்களின்வழி ஒருங்கிணைக்க முடியும். தேடலில் பயன்படுத்தப்படும் இரண்டு வழக்கமாகப் பின்பற்றும் திரள் நிரல்களாக, ஒன்று துகள் திரள் உகப்பாக்கம் (பறவை வலசை போன்றது) எனவும் அடுத்தது வரிசைமுறை உகப்பாக்கம் (எறும்பு சாரை போன்றது) எனவும் அழைக்கப்படுகிறது.
நரம்பியல் வலைப்பின்னல்களும் புள்ளியியல் வகைப்படுத்திகளும் (கீழே விரிவாக விவாதிக்கப்படுகிறது) களத் தேடலின் ஒரு வடிவத்தையே பயன்படுத்துகின்றன. இங்கு தேட வேண்டிய களம், தொடர்கற்றல் வழி உருவாகிறது.
இயல்தருக்கம் அல்லது குறிமுறைத் தருக்கம் அறிவை முறைப்படுத்தலுக்கும் உருவகப் படுத்தலுக்கும் பயன்படுத்தப்படுகிறது.[32] குறிமுறைத் தருக்கம் இரண்டு முதன்மை வடிவங்களில் அமைகிறது. முன்மொழிவு தருக்கம் (இது மெய்நிகர் உண்மையிலும் தருக்கவியலான இணைப்புகளைப் பயன்படுத்தும் அறிக்கைகளிலும் செயல்படுகிறது)[33][34]
தருக்கவியலான உய்த்துணர்தல் (அல்லது கொணர்தல் தருக்கம்) என்பது ஏற்கனவே உண்மை என்று அறியப்பட்ட பிற உண்மை கூற்றுகளில் இருந்து ஒரு புதியதொரு கூற்றை நிறுவும் செயல்முறையாகும் ().[35] ஒரு தருக்கவியலான அறிவுத் தளம் கேள்விகளையும் கூற்றுகளையும் உய்த்துணர்தலின் ஒரு சிறப்பு நிகழ்வாகக் கையாளுகிறது. மிகவும் பொதுவான உய்த்துணர்தல் விதியே அறுதித் தீர்வாக அமையும்.[36] ஒவ்வொரு படிநிலையும் ஒரு உய்த்துணர்தல் விதியின் பயன்பாடாக அமையும்போது, முற்கோள்களில் இருந்து முடிவுகளுக்கு வழிவகுக்கும் ஒரு வழித்தடத்தைக் கண்டறியும் தேடலைச் செய்வதாக உய்த்துணர்தலைக் கருதலாம்.[37] கட்டுப்படுத்தப்பட்ட களங்களில் குறுகிய சான்றுகளைத் தவிர இந்த வழியில் செய்யப்படும் உய்த்துணர்தல் கடினமானது. இதுவரை இதற்கு மேலும் திறமையானதும் பொதுவானதுமான முறை எதுவும் கண்டுபிடிக்கப்படவில்லை.[38]
குழம்பல்நிலைத் தருக்கம் என்பது 0 மற்றும் 1 க்கு இடையில் உண்மையின் அளவை ஒதுக்கி, உறுதியற்றநிலையையும் நிகழ்தகவு சூழ்நிலைகளையும் கையாளுகிறது.[39] ஒருமைசாராத தருக்கங்கள் இயல்புநிலைப் பகுத்தறிவைக் கையாள வடிவமைக்கப்பட்டுள்ளன.[13] பல சிக்கலான களங்களை விவரிக்க தருக்கத்தின் பிற சிறப்பு வகைமைகள் உருவாக்கப்பட்டுள்ளன (மேலே உள்ள அறிவு உருவகப்படுத்தலைப் பார்க்கவும்).
பகுத்தறிவு, திட்டமிடல், கற்றல், கருத்துப்படிமம், எந்திரனியல் உட்பட செநு புலத்தில் உள்ள பல சிக்கல்களின் முகமை, முழுமையற்ற அல்லது உறுதியற்ற தகவல்களுடன் செயல்பட வேண்டும். நிகழ்தகவு கோட்பாட்டையும் பொருளியல் முறைகளையும் பயன்படுத்தி இந்த சிக்கல்களைத் தீர்க்க செநு ஆராய்ச்சியாளர்கள் பல கருவிகளை உருவாக்கியுள்ளனர்.[40]
இவற்றில், பாயேசிய வலைப்பின்னல்கள், பாயேசிய உய்த்துணர்வு நெறிநிரல், பாயேசியக் கற்றல், எதிர்பார்ப்பு பெருமமாக்க்க நெரிநிரல், பாயேசிய முடிவெ௶உப்புக் கோட்பாடு, பாயேசிய முடிவெடுப்பு வலைப்பின்னல், உயர்வாய்ப்புப் பதப் படிமங்கள் ஆகியவை மிகப் பொதுவான கருவிகள் ஆகும். இவற்றைப் பல சிக்கல்களைத் தீர்க்கப் பயன்படுத்தலாம். இவற்றில் பாயேசிய உய்த்தறிதலைப் பயன்படுத்தும் பகுத்தறிவு, என்பது நிகழ்தகவு கணிப்பு நிரல்கள் வடித்தல், முன்கணிப்பு, மென்மையாக்குதல், தரவோடைக்கான விளக்கங்களைக் கண்டறிதல் ஆகியவற்றிற்குப் பயன்படுத்தலாம். இது காலப்போக்கில் நிகழும் செயல்முறைகளைப் பகுப்பாய்வு செய்ய புலன்காட்சி அமைப்புகளுக்கு உதவுகிறது (எ. கா. மறைநிலை மார்கோவ் படிமங்கள் அல்லது கால்மன் வடிப்பிகள்).[41]
முடிவெடுப்புக் கோட்பாடு, முடிவெடுப்புப் பகுப்பாய்வு, தகவல் விழுமியக் கோட்பாடு ஆகியவற்றைப் பயன்படுத்தி ஒரு முகமை எவ்வாறு தேர்வுகளைச் செய்யலாம், திட்டமிடலாம் என்பவற்றைப் பகுப்பாய்வு செய்யும் துல்லியமான கணிதக் கருவிகள் உருவாக்கப்பட்டுள்ளன.[42][43] இந்த கருவிகளில் மார்கோவ் முடிவெடுக்கும் செயல்முறைகள் போன்ற படிமங்கள், இயங்கியல் முடிவெடுப்புச் செயல்முறைகள், விளையாட்டுக் கோட்பாடு, இயங்கமைப்பு வடிவமைப்பு ஆகியன அடங்கும்.[44][41][45]
எளிமையான AI பயன்பாடுகளை இரண்டு வகைகளாகப் பிரிக்கலாம். அவை வகைப்படுத்திகளும் (எ. கா. " பளபளப்பாக இருந்தால் அது வைரம் "), கட்டுப்படுத்திகளும் ( "வைரமானால் எடுத்துகொள்") ஆகும்.[46] வகைபடுத்திகள் செயல்களாகும். இவை நெருக்கமான இணையைத் தெரிவுசெய்ய வடிவ இணக்கத்தைப் பயன்படுத்துகின்றன. இவற்றை. மேற்பார்வையிடப்பட்ட கற்றலைப் பயன்படுத்தி தேர்ந்தெடுக்கப்பட்ட எடுத்துக்காட்டுகளின் அடிப்படையில் சரிசெய்ய முடியும். ஒவ்வொரு வடிவமும் (" அவதானிப்பு " என்றும் அழைக்கப்படுகிறது) முன்வரையறுக்கப்பட்ட குறிப்பிட்ட வகைமையால் பெயரிடப்பட்டுள்ளது. அனைத்து வடிவங்களும் அவற்றின் வகைமைப் பெயர்களுடன் இணைந்து தரவு தொகுப்பு என்று அழைக்கப்படுகின்றன. ஒரு புதிய நோக்கீடு பெறப்படும்போது, அது முந்தைய பட்டறிவின் அடிப்படையில் வகைப்படுத்தப்படும்.[18]
பல வகையான வகைப்படுத்திகள் பயன்பாட்டில் உள்ளன. முடிவெடுப்புத் தொகுப்பு என்பது எளிமையானதும் மிகவும் பரவலாகப் பயன்படுவதுமான குறியீட்டு இயந்திர கற்றல் வழிமுறையாகும்.[47] 1990 களின் நடுப்பகுதி வரை K - அருகு அண்டை நிரல் மிகவும் பரவலாகப் பயன்படுத்தப்பட்ட ஒப்புமை AI ஆகும். 1990 களில் ஒத்துழைப்பு நெறியன் இயந்திரம் (SVM) போன்ற இடம்பெயர் K - அருகு அண்டைச் சாரநிலை முறைகள் பரவலாகப் பயன்பட்த்த்ப்பட்டன.[48] அப்பாவித்தனமான பேயசு வகைமை கூகிளில் " மிகவும் பரவலாகப் பயன்படுத்தப்படும் கற்றல் " என்று கூறப்படுகிறது.[49] நரம்பியல் வலைப்பின்னல்களும் வகைப்படுத்திகளாகப் பயன்படுத்தப்படுகின்றன.[50]
செயற்கை நரம்பியல் வலைப்பின்னல்கள்[50] மனித மூளையின் வடிவமைப்பால் ஈர்க்கப்பட்டவையாகும். ஒரு எளிய நரம்பியல் N மற்ற நரம்பணுக்களிலிருந்து உள்ளீட்டை ஏற்றுக்கொள்கிறது. அவை ஒவ்வொன்றும் செயல்படுத்தப்படும்போது (அல்லது) நரம்பியல் என் தன்னை செயல்படுத்த வேண்டுமா அல்லது அதற்கு எதிராக ஒரு எடை கொண்ட வாக்குகளை செலுத்துகிறது. நடைமுறையில், நியூரான்கள் எண்களின் பட்டியல் ஆகும். எடைகள் மேட்ரிக்ஸ் மற்றும் கற்றல் மேட்ரிக்ஸ் (matrix) மற்றும் திசையன்களில் நேரியல் இயற்கணித செயல்பாடுகளால் செய்யப்படுகிறது. நரம்பியல் நெட்வொர்க்குகள் ஒரு வகை கணித உகப்பாக்கத்தை செய்கின்றன - அவை நெட்வொர்க்கைப் பயிற்றுவிப்பதன் மூலம் உருவாக்கப்பட்ட பல பரிமாண இடவியல் மீது சீரற்ற சாய்வு வம்சாவளியைச் செய்கின்றன.
நரம்பியல் நெட்வொர்க்குகள் உள்ளீடுகள் மற்றும் வெளியீடுகளுக்கு இடையிலான சிக்கலான உறவுகளை மாதிரியாகக் கொண்டு தரவுகளில் வடிவங்களைக் கண்டறிய கற்றுக்கொள்கின்றன. கோட்பாட்டில், ஒரு நரம்பியல் வலையமைப்பு எந்த செயல்பாட்டையும் கற்றுக்கொள்ள முடியும்.[51] மிகவும் பொதுவான பயிற்சி நுட்பம் பின்னோக்கிய புரிதல் வழிமுறை ஆகும்.[52] நரம்பியல் வ.பி. களுக்கான தொடக்க கால கற்றல் நுட்பம் எபியன் கற்றல் ஆகும்.[53]
ஃபீட்ஃபார்வர்டு நரம்பியல் வ.பி. களில் சமிக்ஞை ஒரு திசையில் மட்டுமே செல்கிறது.[54] தொடர்ச்சியான நரம்பியல் வ.பி. கள் வெளியீட்டு குறிகையை மீண்டும் உள்ளீட்டிற்குள் செலுத்துகின்றன. இது முந்தைய உள்ளீட்டு நிகழ்வுகளின் குறுகிய கால நினைவுகளை அனுமதிக்கிறது.[55] பெர்செப்ட்ரான்கள்[56][57] கன்வொல்யூஷனல் நியூரல் நெட்வொர்க்குகள் ஒருவருக்கொருவர் நெருக்கமாக இருக்கும் நியூரான்களுக்கு இடையிலான தொடர்பை வலுப்படபடுத்துகின்றன - இது படச் செயலாக்கத்தில் குறிப்பாக முக்கியமானது. அங்கு ஒரு உள்ளூர் நியூரான்களின் தொகுப்பு வ.பி. ஒரு பொருளை அடையாளம் காணும் முன் ஒரு விளிம்பை அடையாளம் காண வேண்டும்.[58]
ஆழமான கற்றல்[57] பல அடுக்குகள் படிப்படியாக மூல உள்ளீட்டிலிருந்து உயர் நிலை அம்சங்களைப் பிரித்தெடுக்க முடியும். எடுத்துக்காட்டாக, பட செயலாக்கத்தில் கீழ் அடுக்குகள் விளிம்புகளை அடையாளம் காணலாம். அதே நேரத்தில் உயர் அடுக்குகள் இலக்கங்கள் அல்லது எழுத்துக்கள் அல்லது முகங்கள் போன்ற மனிதனுக்கு பொருத்தமான கருத்துக்களை அடையாளம் காணலாம்.
கணினி பார்வை பேச்சு அங்கீகாரம் பட வகைப்பாடு 102 மற்றும் பிறவற்றை உள்ளடக்கிய செயற்கை நுண்ணறிவின் பல முக்கிய துணைத் துறைகளில் ஆழ்ந்த கற்றல் திட்டங்களின் செயல்திறனை வெகுவாக மேம்படுத்தியுள்ளது.
2010 களின் பிற்பகுதியில் வரைவியல் செயலாக்க அலகுகள் (ஜிபியு) முறையில் AI சார் சிறப்பு மேம்பாடுகளுடன் வடிவமைத்தல் விரிவுற்று, சிறப்பு உயர்நெறியப் பாய்வு மென்பொருளுடன் பயன்படுத்தப்பட்டன. முன்பு பயன்படுத்திய மையச் செயலாக்க அலகு (சிபியு) பெரிய அளவிலான வணிக, கல்வித் துறை இயந்திர கற்றல் படிமங்களின் பயிற்சிக்கான சிறப்பு வழிமுறையாக மாற்றப்பட்டது.[59]
வரலாற்று ரீதியாக லிஸ்ப்லா புரோலாக் போன்ற சிறப்பு மொழிகள் பயன்படுத்தப்பட்டன.
செயற்கை நுன்ணறிவு, எந்திரக் கற்றல் தொழில்நுட்பம் 2020 இன் பெரும்பாலான இன்றியமையாத பயன்பாடுகளில் பயன்படுத்தப்படுகிறது. எ.கா.: தேடுபொறிகள் (கூகிள் தேடல் போன்றது)[60]
குறிப்பிட்ட தொழில்கள் அல்லது நிறுவனங்களுக்கான குறிப்பிட்ட சிக்கல்களைத் தீர்க்க ஆயிரக்கணக்கான வெற்றிகரமான செயற்கை அறிதிறன் பயன்பாடுகளும் வழக்கில் உள்ளன. 2017 ஆம் ஆண்டு கணக்கெடுப்பில், ஐந்து நிறுவனங்களில் ஒன்று, சில சலுகைகள் அல்லது செயல்முறைகளில் "செயற்கை நுண்ணறிவை" இணைத்துள்ளதாக தெரிவித்துள்ளது.[61] ஒரு சில எடுத்துகாட்டுகள் ஆற்றல் சேமிப்பு, மருத்துவ நோயறிதல், படைத்துறை தளவாடங்கள் ஆகும்.[62]
1950களிலிருந்து செநு மிகவும் மேம்பட்ட நுட்பங்களை நிறுவவும் ஆயவும் விளையாட்டு நுட்பங்களை (விளையாடும் தந்திரங்கள்) பயன்படுத்துகின்றது. 11 மே 1997 அன்று உலகச் சதுரங்க சாம்பியனான கேரி காசுப்பரோவை வீழ்த்திய முதல் கணினிச் சதுரங்க விளையாட்டு அமைப்பாக, செநு ஆக்கமான டீப் ப்ளூ நிரல் ஆனது. 2011 இல், ஒரு ஜியோபார்டி வினாடி வினா கண்காட்சி போட்டியில் ஐபிஎம் இன் செநு கேள்வி பதில் அமைப்பு வாட்சன் இரண்டு சிறந்த ஜியோபார்ட்டி சாம்பியன்களான பிராட் இரட்டர், கென் ஜென்னிங்சைக் கணிசமான வேறுபாட்டில் தோற்கடிக்க வழிவகுத்தது.[63] மனிதநேயமற்ற மட்டத்தில் போக்கர் போன்ற பிற நிரல்கள் அபூரண - தகவல் விளையாட்டுகளைக் கையாளுகின்றன. ப்ளூரிபஸ் - லோவர் - ஆல்பா 8 மற்றும் செஃபியஸ். 116 டீப் மைண்ட் 2010 களில் ஒரு "பொதுமைப்படுத்தப்பட்ட செயற்கை நுண்ணறிவை உருவாக்கியது" இது பல மாறுபட்ட அடாரி விளையாட்டுகளை அதன் சொந்தமாக கற்றுக்கொள்ள முடியும்.
2020 களின் முற்பகுதியில், செநு உருவாக்கம் பரவலான முதன்மையைப் பெற்றது. GPT – 4, பிற பெரிய மொழிப் படிமங்களை அடிப்படையாகக் கொண்ட அரட்டைஜிபிடியைப் பயன்படுத்த 14% அமெரிக்க பெரியவர்கள் முயன்றனர். மிட்ஜார்னி DALL – E3, ஸ்டேபிள் டிஃப்யூஷன் போன்ற செநு அடிப்படை உரைக்குப் படிம உருவாக்கங்களில் பெருகிவரும் இயல்வாதமும் எளிதான பயன்பாடும் வைரல் செநு உருவாக்கும் போலிப் புகைப்படங்களின் போக்கைத் தூண்டி வளர்த்தன.[64] டொனால்ட் ட்ரம்பின் கற்பனையான கைது மற்றும் பென்டகன் மீதான தாக்குதலின் புரளி மற்றும் தொழில்முறை படைப்பாற்றல் கலைகளில் பயன்படுத்தப்பட்ட போப் பிரான்சிசின் போலிப் புகைப்படம் பரவலான கவனத்தை ஈர்த்தது.[65][66][67]
ஆல்பாமடிப்பு 2 (2020) செயற்கை நுண்ணறிவு ஒரு புரதத்தின் முப்பருமாண்க் கட்டமைப்பை மாதங்களுக்குப் பதிலாக சில மணிநேரங்களில் தோராயமாக மதிப்பிடும் திறனை நிறுவியது.
இயந்திர கற்றல் பயன்பாடுகள் பக்கச்சார்பான தரவுகளிலிருந்து கற்றுக்கொண்டால் அவை பக்கச்சார்பாகவே இருக்கும். எடுத்துக்காட்டாக , 2015 ஜூன் 28 அன்று கூகிள் ஒளிப்பட நிரலின் புதிய பட அடையாளக் கூறுபாடு ஜாக்கி அல்கைனையும் மற்றுமொரு நண்பரையும் "கொரில்லா" என்று அவர்களின் கருப்பு நிறத்தை வைத்து தவறாக அடையாளம் கண்டது. இந்த அமைப்பு கறுப்பின மக்களின் மிகக் குறைவான படங்களைக் கொண்ட ஒரு தரவுத்தொகுப்பில் பயிற்சி பெற்றதால் இது நேர்ந்தது. கூகிள் இந்த சிக்கலைக் கணினி எதையும் "கொரில்லா" என்று பெயரிடுவதைத் தடுத்து சரிசெய்தது. எட்டு ஆண்டுகளுக்குப் பிறகு 2023 இல் கூகிள் ஒளிப்படநிரல் இன்னும் ஒரு கொரில்லாவையும் அடையாளம் காட்டவில்லை. ஆப்பிள் மைக்ரோசாப்ட்டும், அமேசானும் ஒத்த நிரல்களில் இருந்தும் கொரில்லா அடையாளம் காட்டப்படவில்லை.
பயிற்சி தரவு தேர்வு வகையைச் சார்ந்தும் ஒரு படிமத்தின் பயன்படுத்தல் வகையைச் சார்ந்தும் சார்புநிலை அறிமுகப்படுத்தப்படலாம்.[68] செயற்கை அறிதிறன் தனியர்வழி குழுவை வகைபடுத்தும்போது, தனியர், குழுவின் பிற உறுப்பினரை ஒத்திருப்பதாகக் கொள்கிறது. சில வேளைகளில் இந்த உய்த்துணர்தல் சரியற்றதாக இருக்கலாம்.[69] இதற்கு ஒரு எடுத்துக்காட்டு, கம்பாசு(COMPAS) எனும் வணிக நிரல் ஆகும். இந்த நிரலை ஒரு பிரதிவாதி இனப் பாகுபாட்டாளராக மாறுவதற்கான வாய்ப்புகளை மதிப்பிடுவதற்கு அமெரிக்க நீதிமன்றங்கள் பரவலாகப் பயன்படுத்துகின்றன. கம்பாசு நிரல் ஒதுக்கப்பட்ட இனப்பாகுபாட்டு இடர் அளவில், கறுப்பின பிரதிவாதிகளின் பாகுப்பாட்டுணர்வு வெள்ளை பிரதிவாதிகளினதை விட மிகைப்படுத்தப்பட்டதாக கோரக்கூடும் எனவும் என்றாலும், இந்த நிரலில் பிரதிவாதிகளின் இனங்கள் குறித்து ஏதும் உட்கிடையாகக் கூறப்படவில்லை எனவும் வாதிடுகிறது.
சார்புநிலை இடரில் உள்ள மக்களுக்கான சமத்துவத்தை உறுதி செய்வதற்கான நடவடிக்கைகளை எடுக்காமல், பலதுகளிடையான உறவு வரைவுகள் வரையப்படும்போது நலவாழ்வு சமபங்கு சார்ந்த சிக்கல்கல் அதிகரிக்கக்கூடும். இந்த நேரத்தில் பங்கு பயன்பாட்டு உருவகப்படுத்தலையும் பயன்பாட்டையும் உறுதிப்படுத்த, பங்கு - மையப்படுத்தப்பட்ட கருவிகளோ ஒழுங்குமுறைகளோ இல்லை.[70] அல்காரிதச் சார்புநிலை, கடன் மதிப்பீடு, குதிக் கட்டுபாட்டுவழி பணியமர்த்தல், பொது வீட்டுவசதிக்கான விண்ணப்பங்கள் ஆக்கியவற்றுக்குச் செயற்கை அறிதிறனைப் பயன்படுத்தும்போது. சரியற்ற விளைவுகளுக்கு வழிவகுக்கக்கூடும்.
அதன் 2022 ஆம் ஆண்டு கண்கவர், நேர்மை, பொறுப்புக்கூறல், வெளிப்படைத்தன்மைக்கான மாநாட்டில் (ACM FAccT 2022) சியோல், தென்கொரியக் கணினி இயந்திரங்களுக்கான கழகம் (ACM FACT 2022) செயற்கை நுண்ணறிவு, எந்த்ரனியல் அமைப்புகள் சார்புநிலைத் தவறுகள் இல்லாதவை என்று நிறுவப்படும் வரை அவை பாதுகாப்பற்றவை என்றும் குறைபாடுள்ள இணைய தரவுகளின் பரந்த கட்டுப்பாடற்ற வாயில்களில் பயிற்சி பெற்ற கற்றல் நரம்பியல் வலைப்பின்னல்களின் பயன்பாடு குறைக்கப்பட வேண்டும் என்றும், பரிந்துரைக்கும் கண்டுபிடிப்புகளை முன்வைத்து வெளியிட்டது.[71]
நவீன இயந்திர கற்றல் பயன்பாடுகள் எவ்வாறு தம் முடிவை எட்டின என்பதை விளக்க முடியாது.
AI சர்வாதிகார அரசாங்கங்களுக்கு குறிப்பாக, துடியான உளவு மென்பொருள், முகம் அடையாளம் காணுதல், குரல் உணர்தல், போன்றவை பரவலான கண்காணிப்புக்கும் வழிவகுக்கும் பல கருவிகளை வழங்குகிறது. இத்தகைய கண்காணிப்பு இயந்திரக் கற்றலை அரசின் வாய்ப்புள்ள எதிரிகளை வகைப்படுத்த வழிவகுப்பதோடு, அவற்றை மறைக்கவிடாமல் தடுக்கிறது. பரிந்துரை அமைப்புகள் துல்லியமாக பரப்புரையையும் தவறான தகவல்களையும் பேரளவு விளைவுக்காக குறிவைக்க முடியும் - தவறான தகவல்களை உருவாக்குவதில் ஆழ்புரட்டுகள் உதவுகின்றன. மேம்பட்ட செயற்கை அறிதிறனால் சந்தை போன்ற தாராளவாத, பரவலாக்கப்பட்ட அமைப்புகளுடன் மையப்படுத்தப்பட்ட முடிவெடுப்பதை மிகவும் போட்டித்தன்மை வாய்ந்ததாக மாற்ற முடியும்.
அச்சுறுத்தல்வாதிகள், குற்றவாளிகள், முரட்டு நாடுகள் மேம்பட்ட கணினிப் போர், தீங்கான தன்னாட்சி ஆயுதங்கள் போன்ற ஆயுதம் ஏந்திய செயற்கை நுண்ணறிவுகளின் பிற வடிவங்களைப் பயன்படுத்தலாம். 2015 அளவில் ஐம்பதுக்கும் மேற்பட்ட நாடுகள் போர்க்கள ரோபோக்களை ஆராய்ச்சி செய்வதாக தெரிவிக்கப்பட்டது.[72]
இயந்திர கற்றல் AI முறையால் சில மணிநேரங்களில் ஒரு பொருளில் பல்லாயிரக்கணக்கான நச்சு மூலக்கூறுகளை வடிவமைக்க முடியும்.[73]
செயற்கை நுண்ணறிவின் வளர்ச்சியின் தொடக்க காலத்திலிருந்து, கணினிகளுக்கும் மனிதர்களுக்கும் இடையிலான வேறுபாடும் அளவுக் கணிப்பும் தரமதிப்பும் அடிப்படையிலான தீர்ப்பு ஆகியவற்றிற்கு இடையில் கணினிகளால் செய்யக்கூடிய பணிகளை உண்மையில் அவர்களால் செய்ய வேண்டுமா என்பது குறித்து வெய்சென்பாம் முன்வைத்த வாதங்கள் உள்ளன.[74]
பொருளியல் வல்லுநர்கள் AI முறையில் பணிநீக்க இடர்கள் உருவாகும் என அடிக்கடி எடுத்துரைத்துள்ளனர். முழு வேலைவாய்ப்புக்கு போதுமான சமூகக் கொள்கை இல்லையென்றால் வேலையின்மை உருவாவதை ஊகித்தனர்.[75]
கடந்த காலத்தில் தொழில்நுட்பம் மொத்த வேலைவாய்ப்பைக் குறைப்பதை விட அதிகரிக்கும் போக்கைக் கொண்டிருந்தது. ஆனால் பொருளியல் வல்லுநர்கள் "நாங்கள் AI உடனலொப்பந்தமிடாத பகுதிக்குள் இருக்கிறோம்" என்பதை ஒப்புக்கொள்கிறார்கள்.[76] பொருளியல் வல்லுநர்களின் ஒரு கணக்கெடுப்பு எந்திரன்கள், செயற்கை அறிதிறனின் வளர்ந்துவரும் பயன்பாடு நீண்டகால வேலையின்மை கணிசமாக அதிகரிக்கும் என்பதைப் பற்றி கருத்து வேறுபாடு காட்டுகிறது. ஆனால் ஆக்கத்திறனின் ஈட்டங்களை மறுபகிர்வு செய்யப்பட்டால் அது ஒரு நிகர நன்மையாக இருக்கும் என்று அவர்கள் பொதுவாக ஒப்புக்கொள்கிறார்கள். எடுத்துக்காட்டாக, 2010 களில் மைக்கேல் ஆசுபோர்னும் கார்ல் பெனெடிக்டு பிரேவும் அமெரிக்க வேலைகளில் வாய்ப்புள்ள் 47% "தன்னியக்கமயம் அதிக இடரில்" இருப்பதாக மதிப்பிட்டனர், அதே நேரத்தில் OECD அறிக்கை அமெரிக்க வேலைகளில் 9% மட்டுமே "அதிரீடருள்ளது" என்று வகைப்படுத்தியது.[77][75]
முந்தைய தன்னியக்கமய அலைகளைப் போலல்லாமல், பல நடுத்தர வகுப்பினரின் வேலைகள் செயற்கை நுண்ணறிவால் அகற்றப்படலாம் - தி எகனாமிசுட்டு 2015 ஆம் ஆண்டில், "தொழில்துறை புரட்சியின் போது நீராவி சக்தி நீலக் காலர் வேலைகளுக்கு என்ன செய்தது போலவே, செயற்கை நுண்ணறிவு வெள்ளைக் காலர் வேலைகளை செய்ய முடியும் என்ற கவலையை முனைப்பாக கருதுவது முதன்மை வாய்ந்தது" எனக் குறியது.[78]
சாத்தியமான அளவுக்கு பெரிய தரவுத்தொகுப்பைப் பயன்படுத்துவதற்கான ஆக்கநிலை செயற்கை அறிதிறன், பெரும்பாலும் உரிமம் பெறாத பதிப்புவகை ஆக்கங்களில் பயிற்சி அளிக்கப்படுகிறது. இதில் படங்கள் அல்லது கணினி குறியீடு போன்ற களங்கள் அடங்கும். வெளியிட்ட பின்னர் "ஏர்மையான பயன்பாடு" என்ற காரணத்தின் கீழ் பயன்படுத்தப்படுகிறது. இந்தப் பகுத்தறிவு நீதிமன்றங்களில் எந்த சூழ்நிலைகளில் நிலைத்திருக்கும் என்பது குறித்து வல்லுநர்கள் கருத்து வேறுபாடு கொண்டுள்ளனர். இதுதொடர்பான காரணிகளில் "பதிப்புரிமை பெற்ற படைப்பின் பயன்பாட்டின் நோக்கமும் தன்மையும்," "பதிப்புரிமையுள்ள படைப்புக்கான வாய்ப்புள்ள சந்தையில் ஏற்படும் விளைவு" ஆகியவை அடங்கும்.
நட்பான செயற்கை நுண்ணறிவு என்பது தொடக்கத்திலிருந்தே இடர்களைக் குறைக்கவும், மனிதர்களுக்கு பயனளிக்கும் தேர்வுகளைச் செய்யவும் வடிவமைக்கப்பட்ட இயந்திரங்கள் ஆகும். நட்பு AI ஐ உருவாக்குவது அதிக ஆராய்ச்சி முன்னுரிமையாக இருக்க வேண்டும் என்று எலியேசர் யுத்கோவ்சுகி வாதிடுகிறார். இதற்கு ஒரு பெரிய முதலீடு தேவைப்படலாம். மேலும் AI ஒரு இருத்தலியல் இடராக மாறுவதற்கு முன்பே அது முடிக்கப்பட வேண்டும்.
அறிதிறன் வாய்ந்த எந்திரங்கள் தங்கள் அறிவுத் திறனைப் பயன்படுத்தி அறநெறிமுறை முடிவுகளை எடுக்கும் திறனைக் கொண்டுள்ளன. இயந்திர அறவியல் துறை, அறவியல் இடர்களைத் தீர்ப்பதற்கான அறநெறிமுறைக் கொள்கைகளையும் மற்றும் நடைமுறைகளையும் இயந்திரங்களுக்கு வழங்குகிறது.
மற்ற அணுகுமுறைகளில் வெண்டெல் வாலக்கின் "செயற்கை அறவழி முகமைகளும்" சுட்டுவார்ட் ஜே. இரசலின் நிறுவமுடிந்த நலந்தரும் எந்திரங்களை உருவாக்கும் மூன்று நெறிமுறைகளும் அடங்கும்
செயற்கை நுண்ணறிவை ஒழுங்குபடுத்துதல் என்பது செயற்கை நுண்ணறிவை மேம்படுத்துவதற்கும் ஒழுங்குபடுத்துவதற்குமான பொதுத்துறை கொள்கைகள், சட்டங்களின் வளர்ச்சியாகும் (எனவே இதுகணினி நிரல்களின் பரந்த ஒழுங்குமுறையுடன் தொடர்புடையது.[79] Q9. AI க்கான ஒழுங்குமுறை,, கொள்கை சட்டமியற்றல் உலகளவில் அதிகார வரம்புகளில் வளர்ந்து வரும் சிக்கலாகும். ஸ்டான்ஃபோர்டில் உள்ள AI குறியீட்டின்படி , 127 கருத்துக்கணிப்பு நாடுகளில் நிறைவேற்றப்பட்ட AI தொடர்பான சட்டங்களின் ஆண்டு எண்ணிக்கை 2016 இல் இருந்து 2022 இல் மட்டும் 37 ஆக உயர்ந்தது.[80][81] 2016 முதல் 202லாம் ஆண்டுக்கு இடையில் 30 க்கும் மேற்பட்ட நாடுகள் AI க்கான தனி செயல்முறைகளை ஏற்றுக்கொண்டன. மற்றவர்கள் குறிப்பாக வங்காளதேசம், மலேசியா, துனிசியா உட்பட்ட நாடுகள் தங்கள் சொந்த AI செயல்நெறித் திட்டங்களை விரிவுபடுத்தும் பணியில் ஈடுபட்டனர்.[82] 2023 ஆம் ஆண்டில், திறந்த செயற்கை அறிதிறன் தலைவர்கள் மீநுண்ணுணர்வு முறை நிர்வாகத்திற்கான பரிந்துரைகளை வெளியிட்டனர். இது 10 ஆண்டுகளுக்குள் நடக்கக்கூடும் என்று அவர்கள் நம்புகிறார்கள்.[83]
2022 இப்சோசு கருத்துக் கணிப்பில், செயற்கை நுண்ணறிவைப் பற்றிய அணுகுமுறைகள் நாட்டிற்கு ஏற்ப பெரிதும் வேறுபடுகின்றன. 78% சீன குடிமக்களும் 35% அமெரிக்கர்களும் "செயற்கை நுண்ணறிவின் பயன்பாடும் பணியும் குறைபாடுகளை விட அதிக நன்மைகளைக் கொண்டுள்ளன" என்று ஒப்புக் கொண்டனர். 2023 ஆம் ஆண்டு ராய்ட்டர்சு / இப்சோசு நடத்திய கருத்துக் கணிப்பில், 61% அமெரிக்கர்கள் AI மனிதகுலத்திற்குத் தீங்கும் இடரும் ஏற்படுத்துகிறது என்பதை ஏற்றனர். 22% பேர் இதை ஏற்கவில்லை. 2023 ஆம் ஆண்டு பாக்சு நியூசுக் கருத்துக் கணிப்பில், 35% அமெரிக்கர்கள் "மிகவும் முதன்மையானது" என்று நினைத்தனர். மேலும் 41% பேர் மத்திய அரசு AI ஐ ஒழுங்குபடுத்துவது ஓரளவு முதன்மையானது என்று நினைத்தனர்.[84]
எந்திர அல்லது முறைசாரா பகுத்தறிவு பற்றிய ஆய்வு பண்டைய காலத்தில் மெய்யியலாளரும் கணிதவியலாளரும் தொடங்கியது ஆகும். தருக்கவியல் ஆய்வு ஆலன் தூரிங்கின் கணிப்புக் கோட்பாட்டிற்கு நேரடியாக வழிவகுத்தது. இது " 0 மற்றும் " 1 போன்ற எளிய உருக்களை கலப்பதன் வழியே ஓர் எந்திரம் கணிதக் கொணர்வையும் முறையான பகுத்தறிவையும் உருவகப்படுத்த முடியும் என்று பரிந்துரைத்தது. இது தேடல் - தூரிங் ஆய்வுரை என்று அழைக்கப்படுகிறது.[85]
செயற்கை அறிதிறன் ஆராய்ச்சித் துறை 1956 ஆம் ஆண்டில் தார்த்மவுத் கல்லூரியில் ஒரு பணிப்பட்டறையில் நிறுவப்பட்டது.[1][2] இந்தபட்டறையில் கலந்துகொண்டோர் 1960 களில் AI துறையின் வல்லுனராயினர். இவர்களும் மாணவர்களும் உருவாக்கிய நிரல்கள் வியக்கத்தக்கனவாக இருந்ததாக அச்சு ஊடகம் புகழ்ந்தது. கணினிகள் இயற்கணிதத் துறை சரிபார்ப்பிகள், செயல்நெரிகள், சிக்கல்கள், தீர்வுகளைக் கற்கத் தொடங்கின. இவை தருக்கவியலான தேற்றங்களை நிறுவியதோடு ஆங்கிலமும் பேசத் தொடங்கியது.
1960 களின் நடுப்பகுதியில், யு. எஸ். இல் ஆராய்ச்சி பாதுகாப்புத்[86] துறை பேரளவில் நிதி வழங்கியது. ஆய்வகங்கள் உலகமெங்கும் நிறுவப்பட்டன."எந்திரங்கள் இருபது ஆண்டுகளுக்குள் ஒரு மனிதன் செய்யக்கூடிய எந்த வேலையையும் செய்ய முடியும்."[87] என எர்பெர்ட் சைமன் முன்கணித்தார். இதை மார்வின் மின்சுகியும் ஒப்புக்கொண்டு, ஒரு தலைமுறைக்குள்ளே...'செயற்கை நுண்ணறிவை' உருவாக்கும் சிக்கல் கணிசமாகத் தீர்க்கப்படும்" என்று எழுதினார்.[88]
சர் ஜேம்சு இலைட்கில்லின் 175 விமர்சனங்களுக்குப் பிறகு இந்த எந்திரத் திட்டங்களுக்குக் கூடுதலாக நிதி ஒதுக்க, அமெரிக்கப் பேராயத்தின் தொடர்ச்சியான அழுத்தங்களை எதிர்கொள்ளும் வகையில் அமெரிக்காவும் பிரித்தானியாவும் சார்ந்த அரசுகள் இத்துறையின் தேட்ட ஆராய்ச்சிகளுக்கான நிதியைத் துண்டித்தன. மின்சுகியும் பேப்பர்ட்டும் எழுதிய பெர்செப்ட்ரான்ஸ் என்ற புத்தகம், செயற்கை நரம்பியல் வளைப்பின்னல்களின் அணுகுமுறை ஒருபோதும் நடப்பு உலகப் பணிகளுக்குத் தீர்வு காண்பதில் பயனுள்ளதாக இருக்காது என்பதை நிறுவுவதாகப் புரிந்து கொள்ளப்பட்டது.[4]
1980களின் முற்பகுதியில், மனித வல்லுனர்களின் அறிவும் பகுப்பாய்வும் குறித்த திறன்களை உருவகப்படுத்திய AI திட்டத்தின் ஒரு வடிவமான புலமை அமைப்புகளின் வணிக முறை வெற்றியால் AI ஆராய்ச்சி புத்துயிர் பெற்றது.[89] 1985 அளவில் செயற்கை நுண்ணறிவுக்கான சந்தை ஒரு பில்லியன் டாலர்களை எட்டியது. அதே நேரத்தில் ஜப்பானின் ஐந்தாம் தலைமுறைக் கணினி திட்டம் அமெரிக்க, பிரித்தானிய அரசுகளை கல்வி ஆராய்ச்சிக்கான நிதியை மீட்டெடுக்க தூண்டியது.[3] இருப்பினும் 1987 இல் லிஸ்ப் எந்திரச் சந்தையின் சரிவுடன் தொடங்கி, AI மீண்டும் ஒரு முறை இழிவுக்கு உள்ளானது. மேலும் இரண்டாவது நீண்ட கால குளிர்காலம் தொடங்கியது.[5]
பல ஆராய்ச்சியாளர்கள் தற்போதைய நடைமுறைகள் மனித அறிவாற்றலின் மனித அறிதல், குறிப்பாகப் புலன்காட்சி, கற்றல், வடிவங்கூர்திறன் போன்ற அனைத்து செயல்முறைகளையும் பின்பற்ற முடியுமா என்று ஐயுறத் தொடங்கினர். பல ஆராய்ச்சியாளர்கள் துணைக்குறியீட்டு அணுகுமுறைகள் பக்கம் திரும்பினர். உரோடுனே புரூக்சு போன்ற எந்திரனியல் ஆராய்ச்சியாளர்கள் பொது உருவகிப்பை மறுத்து, நகர்ந்து உயிர்வாழும் பொறியியல் இயந்திரங்களில் நேரடியாக கவனத்தைச் செலுத்தினர். ஆனால், யூதேயா பெர்ல் லோஃப்டி சாதேவும் பிறரும் துல்லியமான தருக்கத்தைக் காட்டிலும் சரியான ஊகங்களைச் செய்வதால் முழுமையற்றதும் உறுதியற்றதுமான தகவல்களைக் கையாளும் முறைகளை உருவாக்கினர். ஆனால் மிக முதன்மையான வளர்ச்சி ஜெஃப்ரி கிண்டனும் பிறரும் முன்வைத்த நரம்பியல் வலைப்பின்னல் ஆராய்ச்சி உட்பட்ட ஒருங்கிணைப்பின் மறுமலர்ச்சிக் கட்டமாகும்.[40] 1990 ஆம் ஆண்டில், யான் இலெக்குன் நரம்பியல் வலைப்பின்னல்களின் வெற்றிகரமான பயன்பாடுகளில் முதல் கையால் எழுதப்பட்ட இலக்கங்களை சுழல்திற நரம்பியல் வலையமைப்புகள் அடையாளம் காண முடியும் என்பதை வெற்றிகரமாக விளக்கிக் காட்டினார்.
1990களின் பிற்பகுதியிலும் 21ஆம் நூற்றாண்டின் முற்பகுதியிலும் முறையான கணிதவியல் முறைகளைப் பயன்படுத்துவதனால், குறிப்பிட்ட சிக்கல்களுக்கு குறிப்பிட்ட தீர்வுகளைக் கண்டுபிடிப்பதன் வழி செயற்கை நுன்ணறிவுத் துறை படிப்படியாக அதன் நற்பெயரை மீட்டெடுத்தது. இந்த குறுகிய வரம்பு, முறைசாரா கவனம் ஆராய்ச்சியாளர்களுக்கு சரிபார்க்கக்கூடிய முடிவுகளை உருவாக்கவும், பிற துறைகளுடன் (புள்ளியியல், பொருளியல், கணிதம் போன்றவை) ஒத்துழைக்கவும் வழிவகுத்தது.[90] 1990களில் அவை " செயற்கை நுண்ணறிவு " என்று அரிதாகவே விவரிக்கப்பட்டிருந்தாலும், 2000ஆம் ஆண்டளவில் செயற்கை நுண்ணறிவுத் துறையால் உருவாக்கப்பட்ட இவ்வகைத் தீர்வுகள் பரவலாகப் பயன்படுத்தப்பட்டன.[91]
பல்துறையிலும் முழு நுண்ணறிவு கொண்ட இயந்திரங்களை உருவாக்கும் முதன்மை இலக்கைச் செயற்கை நுண்ணறிவு இப்போது எங்கும் பின்பற்றவில்லை என்று பல கல்வி ஆராய்ச்சியாளர்கள் கவலைப்பட்டனர். 2002 ஆம் ஆண்டு தொடங்கி அவர்கள் செயற்கை பொது செயற்கை நுண்ணறிவின் துணைத் துறையை நிறுவினர். இது 2010 களில் பல நன்கு நிதியளிக்கப்பட்ட நிறுவனங்களைக் கொண்டு வளர்ந்தது.[7]
ஆழமான கற்றல் 2012 ஆம் ஆண்டில் தொழில்துறை அளவுகோல்களில் ஆதிக்கம் செலுத்தத் தொடங்கியது. மேலும் இந்தத் துறை முழுவதுமாக ஏற்றுக்கொள்ளப்பட்டது.[92] பல குறிப்பிட்ட பணிகளுக்குப் பிற முறைகள் கைவிடப்பட்டன.[93] ஆழ்கற்றலின் வெற்றி வன்பொருள் மேம்பாடு (வேகமான கணினிகள், வரைகலைச் செயலாக்க அணிகள், முகில் கணிப்புமுறை போன்றவை), பேரளவுத் தரவுகளை அணுக இயலுதல், படிமநெட் போன்ற தொகுப்புத் தரவுக்கணங்கள் ஆகிய ஏந்துகளால் நேர்ந்தது.
ஆழமான கற்றலின் வெற்றி செயற்கை அறிதிறன் துறையில் ஆர்வத்தையும் நிதியுதவியையும் கொணர, பெரிதும் வழிவகுத்தது.[94] எந்திரக் கற்றலின் அளவு(அத்துறை ஆய்வு வெளியீடுகளை ஒப்பிடுகையில்) 50% அளவுக்கும் மேல் 2015 முதல் 2019 வரை பெருகியது. பதிவுரிமை விண்ணப்பங்கள், பதிவுரிமை வழங்கல் எண்ணிக்கையைப் பொறுத்தவரையில் செயற்கை அறிதிறன் துறை மிகவும் கணிசமாக எழுச்சிகாணும் தொழில்நுட்பமாக விளங்குகிறதென விப்போ) அறிக்கை அறிக்கை கூறுகிறது. செயற்கை அறிதிறன் தொழில்நுட்பத் தாக்கத்தைப் பொறுத்தமட்டில், இத்துறையில் ஆண்டுதோறும் 50 பில்லியன் அமெரிக்க டால்ர்கள் 2022 ஆம் ஆண்டளவில் அமெரிக்காவில் மட்டும் முதலீடு செய்யப்பட்டது. 20% புதிய செயற்கை அறிதிறன் துறையில் முனைவர் பட்டதாரிகள் உருவாகினர். அமெரிக்காவில் 8,00,000 AI துறை வேலைகள் 2022 அளவில் உருவாகின
2016 ஆம் ஆண்டில், நெறியானதும் தவறானதுமான தொழில்நுட்பத்தின் பயன்பாடு பற்றிய சிக்கல்கள் எந்திரக் கற்றல் மாநாடுகளில் மைய நிலைக்கு கொண்டு வரப்பட்டன. வெளியீடுகள் பெருமளவில் அதிகரித்தன. நிதி கிடைத்தது. மேலும் பல ஆராய்ச்சியாளர்கள் இந்தச் சிக்கல்களில் தங்கள் வாழ்க்கையை மீண்டும் மையப்படுத்தினர். இத்துறைசார்ந்த அறநெறிப்படுத்தல் சிக்கல், கல்வியிலும் ஆய்விலும் முனைப்பான துறையாக மாறியது.
1950இல் ஆலனந்தூரிங் எழுதினார்: "இயந்திரங்கள் சிந்திக்க முடியுமா என்ற கேள்வியைக் கருதி பார்க்க நான் முன்மொழிகிறேன்.[95] இயந்திரத்தின் நடத்தையை மட்டுமே நாம் கவனிக்க முடியும் என்பதால், அது உண்மையில் சிந்தனையா அல்லது உண்மையில் ஒரு மனநிலையைக் கொண்டிருக்கிறதா என்பது ஒரு பொருட்டல்ல. மற்றவர்களைப் பற்றிய இந்தப் பொருண்மைகளை நாம் தீர்மானிக்க முடியாது என்று தூரிங் குறிப்பிடுகிறார். ஆனால், "எல்லோரும் நினைக்கும் ஒரு கண்ணியமான மரபு இருப்பது வழக்கம்"
இர்சலும் நோர்விக்கும், செயற்கை நுண்ணறிவு என்பது " செயல்படுவது " என்ற அடிப்படையில் வரையறுக்கப்பட வேண்டும் என்பதை ஒப்புக்கொள்கிறார்கள். ஆனால், சோதனை இயந்திரங்களை மக்களுடன் ஒப்பிடுவது முதன்மையானதாகும் எனக் கூறுகின்றனர். "வானூர்தி பொறியியல்" புறாக்களைப் போலவே பறக்கும் இயந்திரங்களை மற்ற புறாக்களை முட்டாளாக்கும் வகையில் உருவாக்குவது என்று தங்கள் துறையின் இலக்கை வரையறுக்க வேண்டாம்" என்றும் அவர்கள் எழுதினர்.
மெக்கார்த்தி நுண்ணறிவை "உலகில் இலக்குகளை அடையும் திறனின் கணிப்புப் பகுதி" என்று வரையறுக்கிறார். மற்றொரு AI நிறுவனர் மார்வின் மின்சுகி இதேபோல் "வன்சிக்கல்களைத் தீர்க்கும் திறன்" என்று வரையறுத்துள்ளார். இந்த வரையறைகள் அறிதிறனை நன்கு வரையறுக்கப்பட்ட சிக்கல்களாகவும் நன்கு வரையர்த்த தீர்வுகளாகவும் பார்க்கின்றன. இங்கு, எந்திர அறிதிறனின் நேரடி அளவுகளாக சிக்கலின் அரியநிலையும் நிரலின் செயல்திறனும் பார்க்கப்படுகின்றன.
AI துறையில் முதன்மைப் பயனானாளரான கூகிள்.[96] உயிரியல் நுண்ணறிவில் வரையறுக்கப்பட்டதைப் போன்ற நுண்ணறிவின் வெளிப்பாட்டால் தகவல்களை ஒருங்கிணைக்கும் அமைப்புகளின் திறனாக செயற்கை அறிதிறனை வரையறுக்கிறது.
அதன் தொடக்கநிலை வரலாறு முழுவதும் நிறுவப்பட்ட ஒருங்கிணைப்புக் கோட்பாடோ சட்டகமோ இன்றியே வளர்ந்துவந்தது. 2010 களில் ஏர்பாட்டபுள்ளியியல் எந்திரக் கற்றலின் முன்னோடியில்லாத வெற்றி மற்ற அனைத்து அணுகுமுறைகளையும் மறைத்தது (இதனால் சில வாயில்கள்கள் - குறிப்பாக வணிக உலகில் - "செயற்கை நுண்ணறிவு" என்ற சொல்லை "நரம்பியல் வலைப்பின்னல்களுடன் கூடிய எந்திர கற்றல்" என்று பொருள்படப் பயன்படுத்தினர். இந்த அணுகுமுறை பெரும்பாலும் துணை - குறியீடானதும் மென்மையானதும் குறுகியதாகவும் விளங்கியது (கீழே காண்க). இந்த கேள்விகளை எதிர்கால தலைமுறை செயற்கை நுண்ணறிவு ஆராய்ச்சியாளர்கள் மறுகருதலுக்கு உட்படுத்த வேண்டியிருக்கும் என்று திறனாய்வாளர்கள் வாதிடுகின்றனர்.
குறியீட்டு AI (அல்லது GOFAI) [97] மக்கள் புதிர்களைத் தீர்க்கும்போது பயன்படுத்தும் உயர் மட்ட நனவுப் பகுத்தறிவை உருவகப்படுத்தியது. இது சட்டபூர்வமான பகுத்தறிவையும் கணிதச் செயலையும் வெளிப்படுத்துகிறது. இயற்கணிதம் அல்லது IQ சோதனைகள் போன்ற நுண்ணறிவு பணிகளில் அவை மிகவும் வெற்றிகரமாக இருந்தன. 1960களில் நெவெலும் சைமனும் இயற்பியல் குறியீட்டு அமைப்புக் கருதுகோளை முன்மொழிந்தனர். ஒரு இயற்பியல் குறியீட்டு அமைப்பு என்பது ஒரு பொது அறிவார்ந்த செயலுக்கு தேவையானதும் போதுமானதுமான வழிமுறைகளைக் கொண்டுள்ளது.[98]
இருப்பினும், ஒரு பொருளை அடையாளம் காணுதல் அல்லது பொதுப்புலன்சார் பகுத்தறிவு போன்ற மனிதர்கள் எளிதில் தீர்க்கும் பல பணிகளில் குறியீட்டு அணுகுமுறை தோல்வியடைந்தது. உயர் மட்ட அறிவார்ந்த பணிகள் AI க்கு எளிதானவை. ஆனால் குறைந்த அளவிலான அறிவார்ந்த திட்டங்கள் மிகவும் கடினமானவை என்ற கண்டுபிடிப்பு மொராவெக்கின் முரண்பாடாகும்.[99] மெய்யியலார் ஊபெர்த் திரெப்பசு 1960 களில் இருந்து மனிதப் புலமை நனவான சின்ன கையாளுதலைக் காட்டிலும் மயக்கமடைந்த உள்ளுணர்வைப் பொறுத்தது என்றும் வெளிப்படையான குறியீட்டு அறிவைக் காட்டிலும் சூழ்நிலைக்கோர் உணர்வைக் கொண்டிருப்பதாகவும் வாதிட்டார்.[100] அவர் இந்த வாதங்கள் முதன்முதலில் முன்வைத்தபோது கேலி செய்யப்பட்டு புறக்கணிக்கப்பட்டாலும், இறுதியில் AI ஆராய்ச்சி அதை ஒப்புகொள்ள வேண்டியதாயிற்று.[15]
எனினும் சிக்கல் தீர்க்கப்படவில்லை. துணைக் குறியீட்டு பகுத்தறிவு மனித உள்ளுணர்வு செய்யும் அதே பகுத்தறிவற்ற தவறுகள் பலவற்றை செய்யலாம். நோம் சோம்ஸ்கி போன்ற விமர்சகர்கள் பொது நுண்ணறிவை அடைய குறியீட்டு AI பற்றிய தொடர்ச்சியான ஆராய்ச்சி இன்னும் கட்டாயமாக இருக்கும் என்று வாதிடுகின்றனர் , ஏனெனில் துணை குறியீட்டு AI என்பது விளக்கக்கூடிய AI இலிருந்து விலகிச் செல்வதாகும். ஒரு நவீன புள்ளியியல் AI திட்டம் ஏன் ஒரு குறிப்பிட்ட முடிவை எடுத்தது என்பதைப் புரிந்துகொள்வது கடினமும் அல்லது சாத்தியமுமற்றது. நரம்பியல் - குறியீட்டுச் செயற்கை நுண்ணறிவின் வளர்ந்து வரும் துறை, இரண்டு அணுகுமுறைகளையும் இணைக்க முயல்கிறது.
செப்பவாதம் எளிய செப்பமான கொள்கைகளைப் (தர்க்கம் உகப்பாக்கம் அல்லது நரம்பியல் வலைப்பின்னல்கள் போன்றவற்றைப்) பயன்படுத்தி அறிதிறன் நடத்தையை விவரிக்கலாம் என்று நம்புகிறது. கரடுநிலை வாதம் பல தொடர்பில்லாத ஏராளமான சிக்கல்களைத் தீர்க்க வேண்டிய கட்டாயம் இருப்பதாக எதிர்பார்க்கிறது. செப்பவாதிகள் தங்கள் திட்டங்களைக் கோட்பாட்டுக் கண்டிப்புடன் பாதுகாக்கிறார்கள். ஆனால், கரடுநிலை சார்ந்தவர்கள் அவை செயல்படுகின்றனவா என்பதை உறுதிப்படுத்த கூடுதலான தொடர்சோதனைகளை மட்டுமே நம்பியுள்ளனர். இந்தச் சிக்கல் 70 களிலும் 80 களிலும் மிக முனைப்பாக விவாதிக்கப்பட்டது.[101] 1990 களில் உருவாகிய கணித முறைகளும் திடமான அறிவியல் தரநிலைகளும் தீர்வுகளுக்கான வரன்முறையாக மாறியது. இதை, 2003ல் இரசலும் நோர்விக்கும் "செப்பத்தின் வெற்றி" என்று அழைத்தனர். நிகழ்கால AI இருகூறுகளையும் கொண்டுள்ளது.
நிறுவும் வகையில் சரியான அல்லது உகந்த தீர்வை கண்டுபிடிப்பது பல முதன்மையான சிக்கல்களுக்கு பின்பற்ற இய்லாததாகும்.[27]
மென்கணிப்பு என்பது மரபணு வழிமுறைகள், தெளிவற்ற தருக்கம், நரம்பியல் வலைப்பின்னல்கள் உள்ளிட்ட நுட்பங்களின் தொகுப்பாகும். இம்முறை துல்லியமற்ற, உறுதியற்ற, பகுதி உண்மை, தோராயம் ஆகியவற்றைப் பொறுத்துக்கொள்கிறது. 80களின் பிற்பகுதியில் மென்கணிப்பு அறிமுகப்படுத்தப்பட்டது. 21 ஆம் நூற்றாண்டின் மிகவும் வெற்றிகரமான நரம்பியல் நெட்வொர்க்குகளுடன் கூடிய AI நிரல்கள் மென்கணிப்புக்குச் சிறந்த எடுத்துக்காட்டுகள் ஆகும்.
செயற்கைப் பொது நுண்ணறிவு, மீத்திற நுண்ணறிவு (பொது AI) ஆகியவற்றின் குறிக்கோள்களை நேரடியாகத் தொடரலாமா அல்லது மறைமுகமாக பல குறிப்பிட்ட சிக்கல்களைத் தீர்ப்பதால் நெடுநோக்கு இலக்குகளை அடைய வழிவகுக்கும் என முடிவெடுப்பதா என்பதில், AI ஆராய்ச்சியாளர்கள் பிரிந்துள்ளனர். பொது நுண்ணறிவை வரையறுப்பதோ அள்ப்பதோ அரிது. எனவே, (குறுகிய AI) இந்தத் தீர்வுகள் மறைமுகமாக புலத்தின் நீண்ட கால இலக்குகளுக்கு வழிவகுக்கும் என்ற நம்பிக்கையில், செயற்கைப் பொது நுண்ணறிவின் செய்முறைத் துறையின் துணைப்புலம் இந்த பகுதியைச் சிறப்பாக ஆய்வு செய்கிறது.
மன மெய்யியலுக்கு ஓர் இயந்திரம் மனிதர்களைப் போலவே மனம், நனவு, மன நிலைகளையும் கொண்டிருக்க முடியுமா என்பது தெரியாது. இந்தச் சிக்கல் இயந்திரத்தின் வெளிப்புற நடத்தையை விட அதன் உள்புற பட்டறிவுகளை கருத்தில் கொள்கிறது. முதன்மை நீரோட்ட AI ஆராய்ச்சி இந்த சிக்கலை பொருளற்றதாகக் கருதுகிறது. ஏனெனில் இது புலத்தின் குறிக்கோள்களை, நுண்ணறிவைப் பயன்படுத்தி சிக்கல்களைத் தீர்க்கக்கூடிய இயந்திரங்களை உருவாக்குதலைக் கட்டுபடுத்தாது. இரசலும் நோர்விக்கும் மேலும் கூறுகையில், "மனிதர்களைப் போலவே ஒரு இயந்திரத்தை நனவாக்கும் கூடுதல் திட்டம் நாம் எடுக்கத் தயாராக இல்லைசென்றாலும் இது மன மெய்யியலின் ஒரு மையக் கேள்வியாகும். மேலும், இது பொதுவாக புனைகதைகளில்வரும் செயற்கை நுண்ணறிவுச் சிக்கலின் ஒரு மையக் கேள்வியுமாகும்.
டேவிடு சால்மர்சு மனதைப் புரிந்துகொள்வதில் இரண்டு சிக்கல்களை அடையாளம் கண்டார். அதற்கு அவர் நனவின் " கடினமான மற்றும் எளிதான " சிக்கல்கள் என்று பெயரிட்டார். கடினமான சிக்கல் என்னவென்றால் , இது எப்படி உணர்கிறது அல்லது அது ஏன் எதையும் உணர வேண்டும் என்பதை விளக்குவது - அது உண்மையிலேயே ஏதோவொன்றைப் போல உணர்கிறது என்று நாம் நினைப்பது சரிதான் என்று கருதுவது தான் என்றார். (டென்னெட்டின் நனவுப் பொய்த்தோற்றம் உண்மையில் இது ஒரு பொய்த்தோற்றமே என்று கூறுகிறது). மனித தகவல் செயலாக்கத்தை விளக்குவது எளிது எனினும் மனித அகநிலை பட்டறிவை விளக்குவது கடினம். எடுத்துக்காட்டாக, ஒரு வண்ணக் குருட்டுத் தனியரைக் கற்பனை செய்வதும் அவர்கள் தங்கள் பார்வையில் எந்தப் பொருள்கள் சிவப்பு நிறத்தில் உள்ளன என்பதை அடையாளம் காண கற்றுக்கொண்டனர் என்பதை அறிதலும் எளிதே. ஆனால் அந்த நபர் சிவப்பு நிறத்தை எப்படி அறிகிறார் என்பதைத் தெளிவாக அறிதல் இயலாது.
கணிப்புவாதம், மனித மனம் ஒரு தகவல் செயலாக்க அமைப்பு என்றும், சிந்தனை என்பது கணிப்பின் ஒரு வடிவம் என்றும் கூறுகிறது. கணிப்புவாதம் மனதுக்கும் உடலுக்கும் இடையிலான உறவு மென்பொருள், வன்பொருள் இடையிலான உறவைப் போன்றது என்றும், இதுவே மன - உடல் சிக்கலுக்கு ஒரு தீர்வாகலாம் என்றும் வாதிடுகிறது. இந்த மெய்யியல் நிலைப்பாடு 1960 களில் AI ஆராய்ச்சியாளர்களாலும் அறிதல் ஆறிவியலாளர்களாலும் ஈர்க்கப்பட்டது. இந்தச் சிந்தனைப் போக்கு முதலில் மெய்யியலாளர்களான ஜெரி போதோர், கிலாரி புட்னாம் ஆகியோரால் முன்மொழியப்பட்டது.
மெய்யியலாளரான ஜான் சியர்லே இந்த நிலையை "வலுமிகு AI" என்று வகைப்படுத்தினார். "சரியான உள்ளீடுகள், வெளியீடுகளுடன் பொருத்தமாக திட்டமிடப்பட்ட கணினி, அதன்வழி, மனிதருக்கு இருக்கும் மனதைப் போலவே ஒரு மனதையும் கொண்டிருக்கும்".[102]
ஓர் எந்திரனுக்கு ஒரு மனமும், தன்னிலை சார்ந்த பட்டறிவும் இருந்தால், அது உணர்திறனையும் கொண்டிருக்கலாம் (உணரும் திறன் இருந்தால் அதனால் அதுவே தாக்கமுறலாம்). இந்நிலை சில உரிமைகளுக்கான உரிமையை எந்திரனுக்கு அளிக்கவேண்டும் என்று வாதிடுகிறது.[103]எந்தவொரு கற்பனையான எந்திரன் உரிமைகளும் கூட, விலங்கு உரிமைகள், மனித உரிமைகளுடன் கூடிய பொது அறநிரலில்தான் அமைந்து இருக்கும்.
ஒரு மீத்திற அறிதிறன் என்பது ஒரு கருதுகோள்நிலைக் கருதலே ஆகும். இது ஒளிமயமானதும் மிகவும் திறமையானதுமான மனித மனதை விடக் கூர்மதிநுட்பத்தைக் கொண்டிருக்கும்.
செயற்கை பொது நுண்ணறிவு பற்றிய ஆராய்ச்சி போதுமான அறிதிறனுள்ள மென்பொருளை உருவாக்கினால், அது தன்னை மீண்டும் திட்டமிட்டுக் கொள்ளவும் மேம்படுத்திக் கொள்ளவும் முடியும். மேம்படுத்தப்பட்ட மென்பொருள் தன்னை மேம்படுத்துவதில் இன்னும் சிறப்பாக இருக்கும். இந்நிலையை ஐ. ஜே. குட் "நுண்ணறிவு வெடிப்பு" என்றும் வெர்னர் விங்கே "ஒருங்குதிறம்" என்றும் அழைத்தனர்.[104] இருப்பினும் பெரும்பாலான தொழில்நுட்பங்கள் (போக்குவரத்து போன்றவை) காலவரையின்றி அதிவேகமாக மேம்படுவதில்லை; மாறாக தொழில்நுட்பம் தன் செயல்வரம்புகளை அடையும்போது எஸ் - வளைவு மெதுவானதைப் பின்பற்றுகின்றது.
செயற்கை நுண்ணறிவு மிகவும் சக்திவாய்ந்ததாக மாறும் என்றும் இதனால் மனிதகுலம் அதன் கட்டுப்பாட்டை மீளமுடியாத வகையில் இழக்க நேரிடும் என்றும் வாதிடப்படுகிறது. இதையே சுட்டீவன் ஆக்கிங் எனக் கூறுகிறார். மெய்யியலாளர் நிக் போசுட்டிரோமின் கூற்றுப்படி, போதுமான அறிவார்ந்த AI - க்கு இருக்கக்கூடிய அனைத்துக் குறிக்கோளுக்கும் , அது தன்னை முடக்குவதிலிருந்து பாதுகாக்கவும், மேலும் தன் இலக்குகளை சிறப்பாக அடைவதற்கான இடைநிலைப் படிநிலைகளாகும் வளங்களைப் பெறவும் ஊக்குவிக்கப்படுகிறது. மீத்திறன் வாய்ந்த நுண்ணறிவு மனித குலத்திற்கு பாதுகாப்பாக இருக்கவும் அது "அடிப்படையில் நம் பக்கத்தில் இருக்கவும்" மனிதகுலத்தின் அறநெறி மற்றும் மதிப்புகளுடன் உண்மையிலேயே இணைக்கப்பட வேண்டும் AI ஆபத்தானதாக மாற உணர்வு அல்லது உணர்ச்சிகள் தேவையில்லை.[105] அரசியலாளரான சார்லசு டி. உரூபின் , "போதுமான அளவு மேம்பட்ட எந்தவொரு நன்மையும் தீங்கானதிலிருந்தும் பிரித்தறிய முடியாததாக இருக்கிறது" என்று வாதிடுகிறார். மேலும், உயர் அறிதிறன் இயந்திரங்கள் இயல்பாகவே நமக்கு சாதகமாக மட்டும் செயல்படும் என்று நாம் நம்பக்கூடாது என்று எச்சரிக்கிறார்.
வல்லுநர்கள், தொழில்துறை ஆளுமைகளிடையே உள்ள கருத்துக்கள், இறுதியில் மீத்திறன் வாய்ந்த AI இன்தைடரின்பால் அக்கறை கொண்டதும் அக்கறை இல்லாததுமான கணிசமான பகுதிகளுடனும் கலந்தே காணப்படுகின்றன.[106] 2023 ஆம் ஆண்டில் ஜெஃப்ரி ஹின்டன், யோஷுவா பெங்கியோ, டெமிஸ் ஹாஸாபிஸ், சாம் ஆல்ட்மேன் உள்ளிட்ட AI முன்னோடிகள் கூட்டு அறிக்கையை வெளியிட்டனர், "AI இன் அழிவுதரும் இடரைக் கட்டுப்படுத்துவதும் தொற்றுநோய்கள், அணுப் போர் போன்ற பிற சமூக அளவிலான இடர்களுடன் உலகளாவிய முன்னுரிமையாக இருக்க வேண்டும். "நோய்களைத் தீர்ப்பதும் தின்னியக்க ஓட்டிகளின் பாதுகாப்பை மேம்படுத்துவது உள்ளிட்ட ஏராளமான நேர்முக வாயில்களைச் செயற்கை நுண்ணறிவு திறக்கும்" என்று மார்க் ஜுக்கர் பெர்கு கூறிகிறார்.[107] சில வல்லுநர்கள் எதிர்காலத்தில் ஆராய்ச்சிக்கு உத்தரவாதம் அளிக்கக்கூடிய இடர்கள் நெடுந்தொலைவில் உளந்தென்றும் மனிதர்கள் ஒரு மீத்திறன் இயந்திரத்தின் கண்ணோட்டத்தில் மதிப்புமிக்கவர்களாக இருப்பார்கள் என்று வாதிடுகின்றனர்.[108] குறிப்பாக, இராட்னி புரூக்சு 2014 இல் "தீங்கான செயற்கை நுண்ணறிவு உருவாக, இன்னும் பல நூற்றாண்டுகள் உள்ளன" என்று கூறிகிறார்.
எந்திரன் வடிவமைப்பாளர் கான்சு மொராவெக், சைபர்நெட்டிசுட்டான கெவின் வார்விக், கண்டுபிடிப்பாளர் இரே குர்சுவில் ஆகியோர் எதிர்காலத்தில் மனிதர்களும் இயந்திரங்களும் இரண்டையும் விட அதிக திறன் வாய்ந்த சைபோர்க்ஸில் ஒன்றிணைவார்கள் என்று கணித்துள்ளனர். மனிதநேயமற்றது என்று அழைக்கப்படும் இந்தச் சிந்தனைஆல்டசு அகுசிலி, இராபர்ட் எட்டிங்கர் ஆகியோரில் வேர்கொண்டுள்ளது.[109]
"செயற்கை நுண்ணறிவு என்பது படிமலர்ச்சியின் அடுத்த கட்டம்" என்று எட்வர்டு ஃபிரெட்கின் வாதிடுகிறார் - இந்தச் சிந்தனையை முதன்முதலில் சாமுவேல் பட்லரின் " டார்வின் அமாங் தி மெசின்சு " இல் 1863 ஆம் ஆண்டிலேயே முன்மொழிந்தார், 1998 ஆம் ஆண்டில் ஜார்ஜ் தைசன் இதையே தனது புத்தகத்தில் விரிவுபடுத்தினார்.[110]
சிந்தனை திறன் கொண்ட செயற்கை உயிரினங்கள் பழங்காலத்திலிருந்தே கதைசொல்லும் கருவிகளாக தோன்றியுள்ளன.[111] இம்முறை அறிவியல் புனைவிலக்கியத்தில் ஒரு நிலையான முறையாக உள்ளது.
இந்தவகை இல்க்கியப் படைப்புகளில் ஒரு பொதுவான வடிவமுறை மேரி ஷெல்லியின் ஃபிராங்கண்ஸ்டைனுடன் தொடங்கியது, அங்கு ஒரு மனிதப் படைப்பு அதனைப் படைத்த எசமானர்களுக்கே அச்சுறுத்தலாக மாறுகிறது. இதில் ஆர்தர் சி. கிளார்க், ஸ்டான்லி குப்ரிக்கின் 2001: ஒரு விண்வெளி ஒடிசி (1968 – HAL 9000), டிஸ்கவரி ஒன் விண்கலத்தின் பொறுப்பாளரான கொலைகார கணினி, தி டெர்மினேட்டர் (1984), தி மேட்ரிக்ஸ் (1999) போன்ற படைப்புகள் அடங்கும். இதற்கு மாறாக, தி டே தி எர்த் ஸ்டட் ஸ்டில் (1951), பிஷப் ஃப்ரம் ஏலியன்ஸ் (1986) போன்ற அரிய விசுவாசமான ரோபோக்கள் பிரபலமான கலாச்சாரத்தில் குறைவாகவே உள்ளன.
ஐசக் அசிமோவ் எந்திரனியலின் மூன்று விதிகளைப் பல புத்தகங்கள், கதைகளில் அறிமுகப்படுத்தினார் - குறிப்பாக அதே பெயரில் ஒரு சூப்பர் - இன்டெலிஜென்ட் கணினியைப் பற்றிய மல்டிவாக் தொடர். அசிமோவின் சட்டகங்கள் பெரும்பாலும் இயந்திர நெறிமுறைகள் பற்றிய விவாதங்களின்போது கொண்டு வரப்படுகின்றன.
பல படைப்புகள் செயற்கை நுண்ணறிவைப் பயன்படுத்தி, மனிதனாக நம்மை உருவாக்குவது எது என்ற அடிப்படை கேள்வியை எதிர்கொள்ள நம்மை கட்டாயப்படுத்துகின்றன. அவை உணரக்கூடிய திறனைக் கொண்ட செயற்கை உயிரினங்களைக் காட்டுவதோடு அவற்றால் பாதிக்கவும்படுகின்றனர். இந்நிலை கரேல் கேபெக்கின் ஆர். யூ. ஆர். திரைப்படங்களான செயற்கை நுண்ணறிவு, எக்ஸ் மெஷினா படைப்புகளிலும் பிலிப் கே. டிக் எழுதிய மின்செம்மறிகளை எந்திரன்கள் கனவு காண்கின்றனவா (டூ ஆண்ட்ராய்ட்ஸ் ட்ரீம் ஆஃப் எலக்ட்ரிக் ஷீப்) எனும் புதினத்திலும் அமைகிறது. செயற்கை நுண்ணறிவுடன் உருவாக்கப்பட்ட தொழில்நுட்பத்தால் மனிதத் தன்னிலை பற்றிய நமது புரிதல் மாற்றப்படுகிறது என்ற கருத்தை டிக் முன்வைக்கிறார்.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.