Loading AI tools
Из Википедии, свободной энциклопедии
Хими́ческая номенклату́ра — совокупность химических терминов и названий индивидуальных химических веществ, их групп и классов, а также правила составления этих названий[1].
Система наименований химических соединений длительное время развивалась хаотично, наименования давались в основном первооткрывателями каких-либо соединений. Многие вещества известны настолько давно, что происхождение их наименований носит легендарный характер. Исторически сложившиеся «собственные имена» выделяют как тривиальные названия. Они не вытекают из каких-либо единых систематических принципов, не выражают строения соединения и чрезвычайно разнообразны. Например: рудничный газ, винный спирт, ванилин, сода.
Химическая номенклатура, как система единых принципов для создания общепринятой терминологии и названий веществ (систематическая номенклатура), берет свое начало с работы Гитона де Морво, который в 1782 году предложил в противовес спорадическому присвоению названий химических веществ подход, согласно которому простейшим химическим веществам следует присвоить простые химические названия, из которых далее возможно составлять названия соединений более сложного состава[2][3]. Гитон де Морво опубликовал первую таблицу химической номенклатуры (Tableau de Nomenclature Chimique), включавшую шесть минеральных кислот, шесть кислот растительного и четыре животного происхождения, а также три щелочи и предложил на их основе метод наименования около пятисот соединений[4]. В 1787 г шесть французских химиков — Гитон де Морво, Лавуазье, Бертолле, Фуркруа, Хассенфратц и Аде — опубликовали первую общепринятую систематическую химическую номенклатуру (Méthode de nomenclature chimique), получившую далее известность как номенклатура Лавуазье[5][6]. Наряду с правилами наименования веществ, в ней было предложено использовать комбинацию букв и геометрических фигур в качестве символов для обозначения химических веществ и отдельных групп (например, квадрат с буквой F обозначал железо, а круг с буквой F обозначал фторид-ион)[7]−347[3]−245, что явилось прообразом химических формул.
В 1801 году В. М. Севергин принимает новую химическую номенклатуру Лавуазье, переводит и вводит русскоязычные химические термины[8]. Например, он впервые назвал: «кислотворное вещество» (кратко «кислотвор», совр. кислород), водотворное — водород, удушливое — (азот), угольное — углерод. Оксиды металлов назвал — «земли». Дал химическое обозначение солям. В дальнейшем он переводил[9] и составлял химические словари[10], что способствовало закреплению его химической номенклатуры. Развернутое описание химической номенклатуры на русском языке было дано Г. Гессом в 1831 году[11].
В 1803—1810 годах Дальтон предложил альтернативный номенклатуре Лавуазье подход для краткой записи химических соединений, в котором элементы отображались в виде кругов, символизировавшие атомы, с особыми символами или буквами для каждого химического элемента. Достоинством такого подхода являлась возможность изображать структуры молекул в виде комбинации атомов, что явилось прототипом современных структурных формул. Основной недостаток, как и для символических обозначений в номенклатуре Лавуазье, состоял в трудности использования таких обозначений в печатных изданиях[3][12]−256.
В 1813—1814 годах Берцелиус ввёл термин формула для используемого и в настоящее время способа краткой записи соединений, в которой буквенными символами и числами отражается их элементный состав. Каждому химическому элементу соответствовало буквенное обозначение (символ), которое являлось сокращением от его названия на латинском языке и состояло из заглавной буквы или комбинации заглавной и строчной букв латинского алфавита. Формулы Берцелиуса состояли из символов элементов и числовых индексов, отражающих соотношение элементов в соединении[13]−359[7]−348. Берцелиус также предложил использовать предложенные им формулы химических веществ при записи уравнений химических реакций[14]−52. Основная критика формул Берцелиуса, в частности, со стороны Дальтона, состояла в невозможности их использования для отражения последовательности соединения атомов в молекулах[15]. К середине XIX века сформировалась традиция ставить в соответствие названию химического соединения его буквенно-числовую формулу. Созданная Берцелиусом электрохимическая теория, согласно которой соединения образуются в результате взаимодействия «электроположительных» и «электроотрицательных» элементов, стала прочной основой для выработавшей к этому времени номенклатуры неорганических соединений и предшественником бинарной номенклатуры, используемой в настоящее время в неорганической химии.
В конце XVII - начале XIX века химикам удалось выделить из растений и животных большую группу соединений, названных органическими веществами. Однако их ограниченный элементный состав (углерод, водород, а также кислород и, реже, азот и фосфор), отсутствие данных о структуре молекул, а также трудности в установлении количественного состава органических соединений не позволяли использовать для конструирования их названий систематические подходы, достаточно успешно применяемые в то время для неорганических веществ. Поэтому до середины XIX века для органических веществ использовались лишь тривиальные названия по источнику их происхождения (муравьиная, винная, лимонная кислоты), первооткрывателю (кетон Михлера, основание Трёгера), а также являющиеся сокращениями слов и других названий (альдегид — Alcohol dehydrohenatus или ацеталь — продукт реакции ацетона и спирта (alcohol)).
Систематическая номенклатура органических соединений в полной мере возникла после разработки научных основ органической химии, сформированной в 1861 году Бутлеровым в виде теории строения молекул органических веществ, согласно которой идентичность органических соединений определяется не только элементным составом молекул, но и порядком соединения в них атомов и их пространственным расположением.
Можно выделить четыре основных этапа развития систематической номенклатуры:
Существенным дополнением к бинарной номенклатуре неорганических соединений, созданной при участии Лавуазье и Берцелиуса, стала аддитивная номенклатура, предложенная Вернером для координационных соединений[25][26]. В аддитивной номенклатуре названия лигандов следовали за названием центрального атома, к которому добавлялось окончание -ат, если комплексная часть координационного соединения была анионом. Вернер тажке предложил использовать мультипликативные приставки (ди-, три- и т.д.) для указания количества лигандов. Например, тетрацианоникелат(0) калия для K4[Ni(CN)4] или хлорид трис(этилендиамин)кобальта (III) для [Co(NH2CH2CH2NH2)3]Cl3.
Дальнейшая работа по совершенствованию номенклатуры неорганических соединений проводилось под эгидой ИЮПАК, в частности, в 1940 году вышли первые общепринятые Правила наименования неорганических веществ, которые регламентировали построения названий бинарных соединений и веществ, составленных из более двух элементов, номенклатуру кислородсодержащих кислот и их анионов (в том числе мета-, пиро- и поликислот), солей и их кристаллогидратов, координационных соединений[27]. Последующие редации этого документа составили свод номенклатурных правил ИЮПАК по неорганической химии, названный Красная книга.[28]
Впервые упорядоченные номенклатурные правила в области химии полимеров (высокомолекулярных соединений) были разработаны ИЮПАК в 1952 году[29][30]. Наряду с общей терминологией и принципами наименования полимерных молекул они включали определения понятий молекулярной массы полимеров, осмотического давления и вязкости их растворов, номенклатуру полисахаридов, определения основных типов реакций полимеризации и их кинетических аспектов. Первые систематические названия линейных органических полимеров, не получившие впоследствии широкого распространения, состояли из приставки поли-, названия простейшего структурно-повторяющегося фрагмента и суффикса -амер (например, полиметамер для полиэтилена). Далее эта номенклатура была дополнена описанием пространственной структуры для случая регулярных полимеров[31].
В 1975 году[32] номенклатура была существенно пересмотрена и стали допустимыми два подхода для наименования полимеров на основе:
причём, в обоих случаях для названий основы использовалась заместительная номенклатура ИЮПАК для органической химии . Эти походы используются в современной номенклатуре высокомолекулярных соединений[33], составляющей Фиолетовую книгу ИЮПАК[34], в которой также классифицированы структурные типы полимеров и приведены способы построения их структурных формул и перечень общеупотребимых аббревиатур.
В период с 1921 до 1954 года разработкой номенклатуры в области биологической химии занималась отдельная комиссия ИЮПАК. За это время в сотрудничестве с комиссией ИЮПАК по номенклатуре органической химии ею были созданы единые правила для наименования углеводов, аминокислот и пептидов, жиров, ферментов, каротеноидов и витаминов[35]. Выделение биохимии в отдельную от химии и родственную молекулярной биологии область науки привело к созданию в 1955 году самостоятельного Международного союза биохимии (International Union of Biochemistry, IUB), позднее ставшего Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology, IUBMB), который создал собственную комиссию по номенклатуре[36][37][38]. С этого времени ИЮПАК и IUB(MB) ведут совместную работу по совершенствованию биохимической номенклатуры в рамках объединённой комиссии (до 1977 года — Commission of Biochemical Nomenclature, CNB, далее — Joint Commission on Biochemical Nomenclature, JCNB), при этом вопросы номенклатуры, не затрагивающие напрямую интересы химиков, рассматриваются отдельной номенклатурной комиссией IUBMB (Nomenclature Committee of IUBMB, NC-IUBMB)[38][39][40]−159. В 1992 году ИЮПАК и IUBMB выпустили актуальный в то время сборник статей по биохимической номенклатуре, названный Белая книга[41]. Номенклатурные правила по биохимии традиционно выпускаются в виде отдельных статей для каждого класса природных соединений и публикуются в изданиях ИЮПАК[42] и IUBMB[43], а также размещаются на сайте JCNB.
Изначально предполагалось, что для наименования веществ биологического происхождения известного состава и строения будет применяться заместительная номенклатура органических веществ, однако, для биохимического сообщества более приемлемым оказался подход, основанный на принципах рациональной номенклатуры с использованием большого количества тривиальных основ (например, гидрокси-4-L-пролин, деоксирибоза), а для природных соединений более сложного строения (например, ферменты) структурный подход оказался полностью неприменим. Далее основным принципом биохимической номенклатуры стало создании не систематических, а скорее согласованных (coherent) названий и последовательных подходов к их построению[35]−86, при этом названия биохимических молекул выстраиваются на основе одного или более критериев, приведенных ниже[40]−160:
Наличие устоявшейся, общепризнанной на мировом уровне и активно используемой химической номенклатуры является результатом активной и скрупулёзной работы ИЮПАК в течение всей столетней истории[44] существования этого химического общества, сумевшего консолидировать усилия химиков всего мира для выработки единых принципов[45] наименования химических веществ и химической терминологии. На сегодняшний день именно номенклатура ИЮПАК является стандартным средством коммуникации в большинстве научных и промышленных областей химии.
Современная химическая номенклатура ИЮПАК содержит сведения по трем основным направлениям:
Совершенствуя химическую номенклатуру по междисциплинарным областям химии, ИЮПАК тесно взаимодействует с другими мировыми научными организациями, например, Международным союзом биохимии и молекулярной биологии в случае биохимической номенклатуры[52] или Международной федерацией клинической химии и лабораторной медицины для развития раздела химической номенклатуры для применения в клинической биохимии.[53]
Успешность создания химической номенклатуры, общепринятой в мировом масштабе, зачастую определяется возможностью нахождения компромиссов в случае неоднозначных вопросов. В номенклатуре ИЮПАК яркими примерами таких компромиссных решений являются:
Тривиальные названия — названия, исторически закрепившиеся за какими-либо соединениями, и не соответствующие никакой номенклатуре.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.