Remove ads
элементы числовой последовательности Из Википедии, свободной энциклопедии
Чи́сла Фибона́ччи (вариант написания — Фибона́чи[2]) — элементы числовой последовательности[3]:
в которой первые два числа равны 0 и 1, а каждое последующее число равно сумме двух предыдущих чисел[4]. Названы в честь средневекового математика Леонардо Пизанского (известного как Фибоначчи)[5].
Иногда член , равный нулю, опускается — тогда последовательность Фибоначчи начинается с [6][7].
Говоря более формально, последовательность чисел Фибоначчи задаётся линейным рекуррентным соотношением:
Иногда числа Фибоначчи рассматривают и для отрицательных значений как двусторонне бесконечную последовательность, удовлетворяющую тому же рекуррентному соотношению. Соответственно, члены с отрицательными индексами легко получить с помощью эквивалентной формулы «назад»: :
n | … | −10 | −9 | −8 | −7 | −6 | −5 | −4 | −3 | −2 | −1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | … |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
… | −55 | 34 | −21 | 13 | −8 | 5 | −3 | 2 | −1 | 1 | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | … |
(очевидно, что ).
Последовательность Фибоначчи была хорошо известна в древней Индии[8][9][10], где она применялась в метрических науках (просодии, другими словами — стихосложении) намного раньше, чем стала известна в Европе[9][11][12].
Образец длиной может быть построен путём добавления к образцу длиной , либо к образцу длиной — и просодицисты показали, что число образцов длиною является суммой двух предыдущих чисел в последовательности[10]. Дональд Кнут рассмотрел этот эффект в книге «Искусство программирования».
На Западе эта последовательность была исследована Леонардо Пизанским, известным как Фибоначчи, в его труде «Книга абака» (1202)[13][14]. Он рассматривает развитие идеализированной (биологически нереальной) популяции кроликов, где условия таковы: изначально дана новорождённая пара кроликов (самец и самка); со второго месяца после своего рождения кролики начинают спариваться и производить новую пару кроликов, причём уже каждый месяц; кролики никогда не умирают[15][16], — а в качестве искомого выдвигает количество пар кроликов через год:
В конце -го месяца количество пар кроликов будет равно количеству пар в предыдущем месяце плюс количеству новорождённых пар, которых будет столько же, сколько пар было два месяца назад, то есть [17]. Возможно, эта задача также оказалась первой, моделирующей экспоненциальный рост популяции.
Название «последовательность Фибоначчи» впервые было использовано теоретиком XIX века Эдуардом Люка[18].
Формула Бине выражает в явном виде значение как функцию от :
где — золотое сечение и и являются корнями характеристического уравнения . Вообще, аналогичная формула существует для любой линейной рекуррентной последовательности, какой служит и последовательность Фибоначчи.
Из формулы Бине следует, что для всех число есть округление то есть В частности, при справедлива асимптотика
Формула Бине может быть аналитически продолжена следующим образом[уточнить]:
При этом соотношение выполняется для любого комплексного числа .
Некоторые соотношения:
Некоторые более общие формулы:
Числа Фибоначчи представляются значениями континуант на наборе единиц: то есть:
где матрицы имеют размер и где i — мнимая единица.
Также числа Фибоначчи можно выразить через многочлены Чебышёва:
Для любого справедливо:
Как следствие, подсчёт определителей даёт тождество Кассини[27][28]:
С равенством Кассини сопряжено более общее утверждение, названное в честь Эжена Каталана:
Из тождества Кассини следует:
Наибольший общий делитель двух чисел Фибоначчи равен числу Фибоначчи с индексом, равным наибольшему общему делителю индексов, то есть . Одним из следствий этого является то, что делится на тогда и только тогда, когда делится на (за исключением ). В частности, делится на (то есть является чётным) только для ; делится на только для делится на только для и так далее. Другое следствие: может быть простым только для простых (с единственным исключением ). Например, число простое, и его индекс 13 также прост. Но, даже если число простое, число не всегда оказывается простым, и наименьший контрпример — Неизвестно, бесконечно ли множество чисел Фибоначчи, являющихся простыми.
Последовательность чисел Фибоначчи является частным случаем возвратной последовательности, её характеристический многочлен имеет корни и .
Отношения являются подходящими дробями золотого сечения в частности,
Суммы биномиальных коэффициентов на диагоналях треугольника Паскаля являются числами Фибоначчи ввиду формулы:
Нахождение числа Фибоначчи с помощью бинома Ньютона:
В 1964 году доказано[29], что единственными точными квадратами среди чисел Фибоначчи являются числа Фибоначчи с индексами 0, 1, 2, 12:
Производящей функцией последовательности чисел Фибоначчи является:
в частности, 1/998,999 = 0.001001002003005008013021…
Множество чисел Фибоначчи совпадает с множеством неотрицательных значений многочлена:
на множестве неотрицательных целых чисел и [30].
Произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.
Период чисел Фибоначчи по модулю натурального числа называется периодом Пизано и обозначается . Периоды Пизано образуют последовательность[31]:
в частности, последние цифры чисел Фибоначчи образуют периодическую последовательность с периодом , последняя пара цифр чисел Фибоначчи образует последовательность с периодом , последние три цифры — с периодом последние четыре — с периодом последние пять — с периодом и так далее.
Натуральное число является числом Фибоначчи тогда и только тогда, когда или является квадратом[32].
Не существует арифметической прогрессии длиной больше 3, состоящей из чисел Фибоначчи[33].
Число Фибоначчи равно количеству кортежей длины из нулей и единиц, в которых нет двух соседних единиц. При этом равно количеству таких кортежей, начинающихся с нуля, а — начинающихся с единицы.
Произведение любых подряд идущих чисел Фибоначчи делится на произведение первых чисел Фибоначчи.
Бесконечная сумма чисел, обратных числам Фибоначчи, сходится, его сумма («обратная постоянная Фибоначчи») равна 3,359884…
Вариант обобщения чисел Фибоначчи — так называемые числа трибоначчи.
Числа Фибоначчи являются частным случаем последовательностей Люка , при этом их дополнением являются числа Люка .
В связи со свойствами чисел Фибоначчи возникли такие понятия, как дерево Фибоначчи, фибоначчиева система счисления; разработаны метод Фибоначчи с запаздываниями и метод Фибоначчи поиска экстремума.
Существует мнение, что почти все утверждения, находящие числа Фибоначчи в природных и исторических явлениях, неверны — это распространённый миф, который часто оказывается неточной подгонкой под желаемый результат[35][36].
Филлотаксис (листорасположение) у растений описывается последовательностью Фибоначчи, если листья (почки) на однолетнем приросте (побеге, стебле) имеют так называемое спиральное листорасположение. При этом число последовательно расположенных листьев (почек) по спирали плюс один, а также число совершенных при этом полных оборотов спирали вокруг оси однолетнего прироста (побега, стебля) выражаются обычно первыми числами Фибоначчи.
Семена подсолнуха, сосновые шишки, лепестки цветков, ячейки ананаса также располагаются согласно последовательности Фибоначчи[37][38][39][40].
В поэзии чаще находят отношение «золотого сечения» (золотую пропорцию), связанное через формулу Бине с числами Фибоначчи. Например, в поэме Шоты Руставели «Витязь в тигровой шкуре» и на картинах художников[41].
Однако числа Фибоначчи встречаются и непосредственно в поэзии и в музыке[42].
В теории кодирования предложены устойчивые так называемые «коды Фибоначчи»[43], причём основание этих кодов — иррациональное число.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.