Оператор |
Прямоугольные координаты (x, y, z) |
Цилиндрические координаты (ρ, φ, z) |
Сферические координаты (r, θ, φ) |
Параболические координаты (σ, τ, z) |
Формулы преобразования координат |
![{\displaystyle {\begin{matrix}\rho &=&{\sqrt {x^{2}+y^{2}}}\\\varphi &=&\operatorname {arctg} (y/x)\\z&=&z\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/1cc59d924204a6d46e7940d87d38b5b9d9f0ecf9) |
![{\displaystyle {\begin{matrix}x&=&\rho \cos \varphi \\y&=&\rho \sin \varphi \\z&=&z\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/3f6d2f4f3ae69778720db26d901fdcf731ef9685) |
![{\displaystyle {\begin{matrix}x&=&r\sin \theta \cos \varphi \\y&=&r\sin \theta \sin \varphi \\z&=&r\cos \theta \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/5dc454b1677de7b8e472bd118d5deb697e3704ce) |
![{\displaystyle {\begin{matrix}x&=&\sigma \tau \\y&=&{\frac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)\\z&=&z\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/978c8665407f82e20bd5ef37a9f9a1d49e6c0b69) |
![{\displaystyle {\begin{matrix}r&=&{\sqrt {{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}}\\\theta &=&\arccos \left(z/r\right)\\\varphi &=&\operatorname {arctg} (y/x)\\\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/21acc0950f5d78464f3e3b0b854cb1d1f7acd8b7) |
![{\displaystyle {\begin{matrix}r&=&{\sqrt {\rho ^{2}+z^{2}}}\\\theta &=&\operatorname {arctg} {(\rho /z)}\\\varphi &=&\varphi \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/4a86c90c734cebfdf34cba7bcdc6f5c29329a01d) |
![{\displaystyle {\begin{matrix}\rho &=&r\sin {\theta }\\\varphi &=&\varphi \\z&=&r\cos {\theta }\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/0951879eb9954518de4695d463bf56cb06f6e0d8) |
![{\displaystyle {\begin{matrix}\rho \cos \varphi &=&\sigma \tau \\\rho \sin \varphi &=&{\frac {1}{2}}\left(\tau ^{2}-\sigma ^{2}\right)\\z&=&z\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/8f6293b482ba702eac755f49e9430801ebb67eea) |
Радиус-вектор произвольной точки |
![{\displaystyle x\mathbf {\hat {x}} +y\mathbf {\hat {y}} +z\mathbf {\hat {z}} }](//wikimedia.org/api/rest_v1/media/math/render/svg/bdd8c29d26f5b1984642a4ddee9f00a40fac0ec1) |
![{\displaystyle \rho {\boldsymbol {\hat {\rho }}}+z{\boldsymbol {\hat {z}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/3ba045c17a6b008d0ec8300a45b0f4466a29d69c) |
![{\displaystyle r{\boldsymbol {\hat {r}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/6dcb5736a02cc8a5957f9ad727f684463e2a6679) |
![{\displaystyle {\frac {1}{2}}{\sqrt {\sigma ^{2}+\tau ^{2}}}\sigma {\boldsymbol {\hat {\sigma }}}+{\frac {1}{2}}{\sqrt {\sigma ^{2}+\tau ^{2}}}\tau {\boldsymbol {\hat {\tau }}}+z\mathbf {\hat {z}} }](//wikimedia.org/api/rest_v1/media/math/render/svg/4dffd11a3c9da98b95d145c536ee9e3ccd0169b2) |
Связь единичных векторов |
![{\displaystyle {\begin{matrix}{\boldsymbol {\hat {\rho }}}&=&{\frac {x}{\rho }}\mathbf {\hat {x}} +{\frac {y}{\rho }}\mathbf {\hat {y}} \\{\boldsymbol {\hat {\varphi }}}&=&-{\frac {y}{\rho }}\mathbf {\hat {x}} +{\frac {x}{\rho }}\mathbf {\hat {y}} \\\mathbf {\hat {z}} &=&\mathbf {\hat {z}} \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/9eebfd68ae858abcfc658b2db72172679e8e3ebe) |
![{\displaystyle {\begin{matrix}\mathbf {\hat {x}} &=&\cos \varphi {\boldsymbol {\hat {\rho }}}-\sin \varphi {\boldsymbol {\hat {\varphi }}}\\\mathbf {\hat {y}} &=&\sin \varphi {\boldsymbol {\hat {\rho }}}+\cos \varphi {\boldsymbol {\hat {\varphi }}}\\\mathbf {\hat {z}} &=&\mathbf {\hat {z}} \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/de5ddc907a7ca5a897963431ef937b8ac01b155f) |
![{\displaystyle {\begin{matrix}\mathbf {\hat {x}} &=&\sin \theta \cos \varphi {\boldsymbol {\hat {r}}}+\cos \theta \cos \varphi {\boldsymbol {\hat {\theta }}}-\sin \varphi {\boldsymbol {\hat {\varphi }}}\\\mathbf {\hat {y}} &=&\sin \theta \sin \varphi {\boldsymbol {\hat {r}}}+\cos \theta \sin \varphi {\boldsymbol {\hat {\theta }}}+\cos \varphi {\boldsymbol {\hat {\varphi }}}\\\mathbf {\hat {z}} &=&\cos \theta {\boldsymbol {\hat {r}}}-\sin \theta {\boldsymbol {\hat {\theta }}}\\\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/aa06c1b9d9282e6b0b62f9f5394606a340c266d7) |
![{\displaystyle {\begin{matrix}{\boldsymbol {\hat {\sigma }}}&=&{\frac {\tau }{\sqrt {\tau ^{2}+\sigma ^{2}}}}\mathbf {\hat {x}} -{\frac {\sigma }{\sqrt {\tau ^{2}+\sigma ^{2}}}}\mathbf {\hat {y}} \\{\boldsymbol {\hat {\tau }}}&=&{\frac {\sigma }{\sqrt {\tau ^{2}+\sigma ^{2}}}}\mathbf {\hat {x}} +{\frac {\tau }{\sqrt {\tau ^{2}+\sigma ^{2}}}}\mathbf {\hat {y}} \\\mathbf {\hat {z}} &=&\mathbf {\hat {z}} \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/7b68abcede0aaef2942e941ecdf098ed5fa8d496) |
![{\displaystyle {\begin{matrix}\mathbf {\hat {r}} &=&{\frac {x\mathbf {\hat {x}} +y\mathbf {\hat {y}} +z\mathbf {\hat {z}} }{r}}\\{\boldsymbol {\hat {\theta }}}&=&{\frac {xz\mathbf {\hat {x}} +yz\mathbf {\hat {y}} -\rho ^{2}\mathbf {\hat {z}} }{r\rho }}\\{\boldsymbol {\hat {\varphi }}}&=&{\frac {-y\mathbf {\hat {x}} +x\mathbf {\hat {y}} }{\rho }}\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/1f41c93f5e5a40cb8684e637ae06e2da5d94d63d) |
![{\displaystyle {\begin{matrix}\mathbf {\hat {r}} &=&{\frac {\rho }{r}}{\boldsymbol {\hat {\rho }}}+{\frac {z}{r}}\mathbf {\hat {z}} \\{\boldsymbol {\hat {\theta }}}&=&{\frac {z}{r}}{\boldsymbol {\hat {\rho }}}-{\frac {\rho }{r}}\mathbf {\hat {z}} \\{\boldsymbol {\hat {\varphi }}}&=&{\boldsymbol {\hat {\varphi }}}\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/75eebee8e773d28b04c5697cf4d849a11783ecfb) |
![{\displaystyle {\begin{matrix}{\boldsymbol {\hat {\rho }}}&=&\sin \theta \mathbf {\hat {r}} +\cos \theta {\boldsymbol {\hat {\theta }}}\\{\boldsymbol {\hat {\varphi }}}&=&{\boldsymbol {\hat {\varphi }}}\\\mathbf {\hat {z}} &=&\cos \theta \mathbf {\hat {r}} -\sin \theta {\boldsymbol {\hat {\theta }}}\\\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/d64489d7a350df08872e9ccd4f6ea52c42a50bc0) |
. |
Векторное поле ![{\displaystyle \mathbf {A} }](//wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1) |
![{\displaystyle A_{x}\mathbf {\hat {x}} +A_{y}\mathbf {\hat {y}} +A_{z}\mathbf {\hat {z}} }](//wikimedia.org/api/rest_v1/media/math/render/svg/ad76dd2d3b45a925cfb8bce33131d36db2ab0f23) |
![{\displaystyle A_{\rho }{\boldsymbol {\hat {\rho }}}+A_{\varphi }{\boldsymbol {\hat {\varphi }}}+A_{z}{\boldsymbol {\hat {z}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/ac4e97123158fcb50e6a19104b2c753c4819dfce) |
![{\displaystyle A_{r}{\boldsymbol {\hat {r}}}+A_{\theta }{\boldsymbol {\hat {\theta }}}+A_{\varphi }{\boldsymbol {\hat {\varphi }}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/76b7c4b1252febe54d660470f4b0954505081cd8) |
![{\displaystyle A_{\sigma }{\boldsymbol {\hat {\sigma }}}+A_{\tau }{\boldsymbol {\hat {\tau }}}+A_{\varphi }{\boldsymbol {\hat {z}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/9e038956793136f8c4578216bb148baf2d696d3d) |
Градиент ![{\displaystyle \nabla f}](//wikimedia.org/api/rest_v1/media/math/render/svg/b7b4d6de89b52c5a5e6e1583cb63eaee263e307b) |
![{\displaystyle {\partial f \over \partial x}\mathbf {\hat {x}} +{\partial f \over \partial y}\mathbf {\hat {y}} +{\partial f \over \partial z}\mathbf {\hat {z}} }](//wikimedia.org/api/rest_v1/media/math/render/svg/38d4891c2e09c25d3d697d2535fced3e02e66544) |
![{\displaystyle {\partial f \over \partial \rho }{\boldsymbol {\hat {\rho }}}+{1 \over \rho }{\partial f \over \partial \varphi }{\boldsymbol {\hat {\varphi }}}+{\partial f \over \partial z}{\boldsymbol {\hat {z}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/aaccde17955152e790a902d89e60338205b444bb) |
![{\displaystyle {\partial f \over \partial r}{\boldsymbol {\hat {r}}}+{1 \over r}{\partial f \over \partial \theta }{\boldsymbol {\hat {\theta }}}+{1 \over r\sin \theta }{\partial f \over \partial \varphi }{\boldsymbol {\hat {\varphi }}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/f9084e616376ab0b0590d29d06d6c1f684438876) |
![{\displaystyle {\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial f \over \partial \sigma }{\boldsymbol {\hat {\sigma }}}+{\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial f \over \partial \tau }{\boldsymbol {\hat {\tau }}}+{\partial f \over \partial z}{\boldsymbol {\hat {z}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/2758d75fce16fd75a3e2fb787f0e7e9a8eab9e5b) |
Дивергенция ![{\displaystyle \nabla \cdot \mathbf {A} }](//wikimedia.org/api/rest_v1/media/math/render/svg/85e5f307f11f895b129a3100e4c2e45315cdd0ca) |
![{\displaystyle {\partial A_{x} \over \partial x}+{\partial A_{y} \over \partial y}+{\partial A_{z} \over \partial z}}](//wikimedia.org/api/rest_v1/media/math/render/svg/2ecd3112f199d497fa61f94a600630fcca87679f) |
![{\displaystyle {1 \over \rho }{\partial \left(\rho A_{\rho }\right) \over \partial \rho }+{1 \over \rho }{\partial A_{\varphi } \over \partial \varphi }+{\partial A_{z} \over \partial z}}](//wikimedia.org/api/rest_v1/media/math/render/svg/bcdb618fa0962b7046931f1ab99b65809e47f517) |
![{\displaystyle {1 \over r^{2}}{\partial \left(r^{2}A_{r}\right) \over \partial r}+{1 \over r\sin \theta }{\partial \over \partial \theta }\left(A_{\theta }\sin \theta \right)+{1 \over r\sin \theta }{\partial A_{\varphi } \over \partial \varphi }}](//wikimedia.org/api/rest_v1/media/math/render/svg/8e7a91b20431b71340a96fe4c5d026929d7a3b4d) |
![{\displaystyle {\frac {1}{\sigma ^{2}+\tau ^{2}}}{\partial A_{\sigma } \over \partial \sigma }+{\frac {1}{\sigma ^{2}+\tau ^{2}}}{\partial A_{\tau } \over \partial \tau }+{\partial A_{z} \over \partial z}}](//wikimedia.org/api/rest_v1/media/math/render/svg/af376344d844837108e1098233e15868e00f84ce) |
Ротор ![{\displaystyle \nabla \times \mathbf {A} }](//wikimedia.org/api/rest_v1/media/math/render/svg/f205d8e6c83778d0913fa2c5fa4f0bdbaa356b90) |
![{\displaystyle {\begin{matrix}\left({\partial A_{z} \over \partial y}-{\partial A_{y} \over \partial z}\right)\mathbf {\hat {x}} &+\\\left({\partial A_{x} \over \partial z}-{\partial A_{z} \over \partial x}\right)\mathbf {\hat {y}} &+\\\left({\partial A_{y} \over \partial x}-{\partial A_{x} \over \partial y}\right)\mathbf {\hat {z}} &\ \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/b3423e468f7cfe5066f9995d985212d182a6f097) |
![{\displaystyle {\begin{matrix}\left({\frac {1}{\rho }}{\frac {\partial A_{z}}{\partial \varphi }}-{\frac {\partial A_{\varphi }}{\partial z}}\right){\boldsymbol {\hat {\rho }}}&+\\\left({\frac {\partial A_{\rho }}{\partial z}}-{\frac {\partial A_{z}}{\partial \rho }}\right){\boldsymbol {\hat {\varphi }}}&+\\{\frac {1}{\rho }}\left({\frac {\partial (\rho A_{\varphi })}{\partial \rho }}-{\frac {\partial A_{\rho }}{\partial \varphi }}\right){\boldsymbol {\hat {z}}}&\ \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/a8a9a5bf3e4b3ef0f7b7f357266c67e9f372a6fa) |
![{\displaystyle {\begin{matrix}{1 \over r\sin \theta }\left({\partial \over \partial \theta }\left(A_{\varphi }\sin \theta \right)-{\partial A_{\theta } \over \partial \varphi }\right){\boldsymbol {\hat {r}}}&+\\{1 \over r}\left({1 \over \sin \theta }{\partial A_{r} \over \partial \varphi }-{\partial \over \partial r}\left(rA_{\varphi }\right)\right){\boldsymbol {\hat {\theta }}}&+\\{1 \over r}\left({\partial \over \partial r}\left(rA_{\theta }\right)-{\partial A_{r} \over \partial \theta }\right){\boldsymbol {\hat {\varphi }}}&\ \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/510072c27861b41080a3222e1c32d6acd9d00707) |
![{\displaystyle {\begin{matrix}\left({\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial A_{z} \over \partial \tau }-{\partial A_{\tau } \over \partial z}\right){\boldsymbol {\hat {\sigma }}}&-\\\left({\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}{\partial A_{z} \over \partial \sigma }-{\partial A_{\sigma } \over \partial z}\right){\boldsymbol {\hat {\tau }}}&+\\{\frac {1}{\sqrt {\sigma ^{2}+\tau ^{2}}}}\left({\partial \left(sA_{\varphi }\right) \over \partial s}-{\partial A_{s} \over \partial \varphi }\right){\boldsymbol {\hat {z}}}&\ \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/dbeb39de31c97e8393bcbeb58c9bcdb48a9c4557) |
Оператор Лапласа ![{\displaystyle \Delta f=\nabla ^{2}f}](//wikimedia.org/api/rest_v1/media/math/render/svg/d03af83ef5fc369cead03b5cc0326010c8d2d1ca) |
![{\displaystyle {\partial ^{2}f \over \partial x^{2}}+{\partial ^{2}f \over \partial y^{2}}+{\partial ^{2}f \over \partial z^{2}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/07028a27c05b1b863f5d10198ab21f992fdc3b80) |
![{\displaystyle {1 \over \rho }{\partial \over \partial \rho }\left(\rho {\partial f \over \partial \rho }\right)+{1 \over \rho ^{2}}{\partial ^{2}f \over \partial \varphi ^{2}}+{\partial ^{2}f \over \partial z^{2}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/c64d7fb42d32625ec736373c1dc1407ec669f7fe) |
![{\displaystyle {1 \over r^{2}}{\partial \over \partial r}\!\left(r^{2}{\partial f \over \partial r}\right)\!+\!{1 \over r^{2}\!\sin \theta }{\partial \over \partial \theta }\!\left(\sin \theta {\partial f \over \partial \theta }\right)\!+\!{1 \over r^{2}\!\sin ^{2}\theta }{\partial ^{2}f \over \partial \varphi ^{2}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/34a78ed3bf097112a14e75d9687abe93ead9803f) |
![{\displaystyle {\frac {1}{\sigma ^{2}+\tau ^{2}}}\left({\frac {\partial ^{2}f}{\partial \sigma ^{2}}}+{\frac {\partial ^{2}f}{\partial \tau ^{2}}}\right)+{\frac {\partial ^{2}f}{\partial z^{2}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/8c952b47c5f0875bd2df97b7760d930b9dba7613) |
Векторный оператор Лапласа ![{\displaystyle \Delta \mathbf {A} }](//wikimedia.org/api/rest_v1/media/math/render/svg/160986362d07d350c830db4a6400c78c0454f2ea) |
![{\displaystyle {\begin{matrix}\Delta A_{x}\mathbf {\hat {x}} +\Delta A_{y}\mathbf {\hat {y}} +\Delta A_{z}\mathbf {\hat {z}} =\\{\biggl (}{\partial ^{2}A_{x} \over \partial x^{2}}+{\partial ^{2}A_{x} \over \partial y^{2}}+{\partial ^{2}A_{x} \over \partial z^{2}}{\biggr )}\mathbf {\hat {x}} +\\{\biggl (}{\partial ^{2}A_{y} \over \partial x^{2}}+{\partial ^{2}A_{y} \over \partial y^{2}}+{\partial ^{2}A_{y} \over \partial z^{2}}{\biggr )}\mathbf {\hat {y}} +\\{\biggl (}{\partial ^{2}A_{z} \over \partial x^{2}}+{\partial ^{2}A_{z} \over \partial y^{2}}+{\partial ^{2}A_{z} \over \partial z^{2}}{\biggr )}\mathbf {\hat {z}} \ \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/9ee2ca319fe1a8c6ba5c5f66f745619b91040b4e) |
![{\displaystyle {\begin{matrix}\left(\Delta A_{\rho }-{A_{\rho } \over \rho ^{2}}-{2 \over \rho ^{2}}{\partial A_{\varphi } \over \partial \varphi }\right){\boldsymbol {\hat {\rho }}}&+\\\left(\Delta A_{\varphi }-{A_{\varphi } \over \rho ^{2}}+{2 \over \rho ^{2}}{\partial A_{\rho } \over \partial \varphi }\right){\boldsymbol {\hat {\varphi }}}&+\\\left(\Delta A_{z}\right){\boldsymbol {\hat {z}}}&\ \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/65159e2944e2c7642ac9ca7acc1eb6bdcbbcf586) |
![{\displaystyle {\begin{matrix}\left(\Delta A_{r}-{2A_{r} \over r^{2}}-{2 \over r^{2}\sin \theta }{\partial \left(A_{\theta }\sin \theta \right) \over \partial \theta }-{2 \over r^{2}\sin \theta }{\partial A_{\varphi } \over \partial \varphi }\right){\boldsymbol {\hat {r}}}&+\\\left(\Delta A_{\theta }-{A_{\theta } \over r^{2}\sin ^{2}\theta }+{2 \over r^{2}}{\partial A_{r} \over \partial \theta }-{2\cos \theta \over r^{2}\sin ^{2}\theta }{\partial A_{\varphi } \over \partial \varphi }\right){\boldsymbol {\hat {\theta }}}&+\\\left(\Delta A_{\varphi }-{A_{\varphi } \over r^{2}\sin ^{2}\theta }+{2 \over r^{2}\sin \theta }{\partial A_{r} \over \partial \varphi }+{2\cos \theta \over r^{2}\sin ^{2}\theta }{\partial A_{\theta } \over \partial \varphi }\right){\boldsymbol {\hat {\varphi }}}&\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/85ef91b2510297986e1b3318f384a7f88a8bb2e0) |
? |
Элемент длины |
![{\displaystyle d\mathbf {l} =dx\mathbf {\hat {x}} +dy\mathbf {\hat {y}} +dz\mathbf {\hat {z}} }](//wikimedia.org/api/rest_v1/media/math/render/svg/327d2a59f21036ba6ad1a5b4ec19c9436b4fdc06) |
![{\displaystyle d\mathbf {l} =d\rho {\boldsymbol {\hat {\rho }}}+\rho d\varphi {\boldsymbol {\hat {\varphi }}}+dz{\boldsymbol {\hat {z}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/4b7d2500b2a5a63966a2eecb029ca7f40d0d1e25) |
![{\displaystyle d\mathbf {l} =dr\mathbf {\hat {r}} +rd\theta {\boldsymbol {\hat {\theta }}}+r\sin \theta d\varphi {\boldsymbol {\hat {\varphi }}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/758f32f37d21bb8eb6c70fb1daabeb7438d61472) |
![{\displaystyle d\mathbf {l} ={\sqrt {\sigma ^{2}+\tau ^{2}}}d\sigma {\boldsymbol {\hat {\sigma }}}+{\sqrt {\sigma ^{2}+\tau ^{2}}}d\tau {\boldsymbol {\hat {\tau }}}+dz{\boldsymbol {\hat {z}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/3819a8facea611e8775b525d6c5e89be691f2a72) |
Элемент ориентированной площади |
![{\displaystyle {\begin{matrix}d\mathbf {S} =&dy\,dz\,\mathbf {\hat {x}} +\\&dx\,dz\,\mathbf {\hat {y}} +\\&dx\,dy\,\mathbf {\hat {z}} \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/f555cb8d7014ef21584c3880940f59281bac35ce) |
![{\displaystyle {\begin{matrix}d\mathbf {S} =&\rho \,d\varphi \,dz\,{\boldsymbol {\hat {\rho }}}+\\&d\rho \,dz\,{\boldsymbol {\hat {\varphi }}}+\\&\rho \,d\rho d\varphi \,\mathbf {\hat {z}} \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/3e9c50590661ecb0ef5f7f2be6f3ba7e30fe2863) |
![{\displaystyle {\begin{matrix}d\mathbf {S} =&r^{2}\sin \theta \,d\theta \,d\varphi \,\mathbf {\hat {r}} +\\&r\sin \theta \,dr\,d\varphi \,{\boldsymbol {\hat {\theta }}}+\\&r\,dr\,d\theta \,{\boldsymbol {\hat {\varphi }}}\end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/71d5d406634d79adb115425bfdafeeb7807499f3) |
![{\displaystyle {\begin{matrix}d\mathbf {S} =&{\sqrt {\sigma ^{2}+\tau ^{2}}}\,d\tau \,dz\,{\boldsymbol {\hat {\sigma }}}+\\&{\sqrt {\sigma ^{2}+\tau ^{2}}}d\sigma \,dz\,{\boldsymbol {\hat {\tau }}}+\\&\sigma ^{2}+\tau ^{2}d\sigma \,d\tau \,\mathbf {\hat {z}} \end{matrix}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/bdbb9bdca654bae2457579e29c549ae9ff03f238) |
Элемент объёма |
![{\displaystyle dV=dx\,dy\,dz}](//wikimedia.org/api/rest_v1/media/math/render/svg/375fb01a6e4fc1fafdb48d5d2aad5f3e05a70c14) |
![{\displaystyle dV=\rho \,d\rho \,d\varphi \,dz}](//wikimedia.org/api/rest_v1/media/math/render/svg/870478b7e837f3902bf38bd9f82263e7608ef45c) |
![{\displaystyle dV=r^{2}\sin \theta \,dr\,d\theta \,d\varphi }](//wikimedia.org/api/rest_v1/media/math/render/svg/e7baab55bb4d5559e61d50df77cca1d7f6befc27) |
![{\displaystyle dV=\left(\sigma ^{2}+\tau ^{2}\right)d\sigma d\tau dz}](//wikimedia.org/api/rest_v1/media/math/render/svg/0c0a25f209b273ac247715ba46bb02840cf70c7c) |