Лучшие вопросы
Таймлайн
Чат
Перспективы

Градиент

обобщение понятия производной на функции нескольких переменных Из Википедии, свободной энциклопедии

Градиент
Remove ads
Remove ads

Градие́нт (от лат. gradiens — «шагающий, растущий»)  — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины (значение которой меняется от одной точки пространства к другой, образуя скалярное поле). Этот вектор ортогонален изоповерхности const.

Thumb
Оператор градиента преобразует холм (слева), если смотреть на него сверху, в поле векторов (справа). Видно, что векторы направлены «в горку» и чем они длиннее, тем круче наклон

Градиент поля обозначается: . По величине (модулю) градиент равен скорости роста величины в направлении вектора[1][2]. Например, если взять в качестве высоту поверхности земли над уровнем моря, то её градиент в каждой точке поверхности будет показывать «направление самого крутого подъёма», а своей величиной характеризовать крутизну склона.

Пространство, на котором определена функция и её градиент, может быть, вообще говоря, как обычным трёхмерным пространством, так и пространством любой другой размерности.

Термин впервые появился в метеорологии для исследования изменений температуры и давления атмосферы, а в математику был введён Максвеллом в 1873 году; обозначение тоже предложил Максвелл. Наряду со стандартным обозначением часто используется компактная запись с использованием оператора набла:

Remove ads

Иллюстрация применения

Thumb
Градиент 2D функции отображен на графике в виде синих стрелок

Пусть температура в комнате задана с помощью скалярного поля , не изменяющегося с течением времени, таким образом, что в каждой точке с координатами  температура равняется . В каждой точке комнаты градиент функции будет показывать направление, перпендикулярное изотермической поверхности, в котором температура возрастает быстрее всего. Величина градиента определяет, насколько быстро температура возрастает в данном направлении.

Remove ads

Определение и вычисление

Суммиров вкратце
Перспектива

Для случая трёхмерного пространства градиентом дифференцируемой в некоторой области скалярной функции координат , , называется векторная функция с компонентами

[3]

Или, использовав для единичных векторов по осям прямоугольных декартовых координат :

Если  — функция переменных , то её градиентом называется -мерный вектор

компоненты которого равны частным производным по всем её аргументам.

  • Размерность вектора градиента определяется, таким образом, размерностью пространства (или многообразия), на котором задано скалярное поле, о градиенте которого идёт речь.
  • Оператором градиента называется оператор, действие которого на скалярную функцию (поле) даёт её градиент. Этот оператор иногда коротко называют просто «градиентом».

Смысл градиента любой скалярной функции в том, что его скалярное произведение с бесконечно малым вектором перемещения даёт полный дифференциал этой функции при соответствующем изменении координат в пространстве, на котором определена , то есть линейную (в случае общего положения она же главная) часть изменения при смещении на . Применяя одну и ту же букву для обозначения функции от вектора и соответствующей функции от его координат, можно написать:

Поскольку формула полного дифференциала не зависит от вида координат , полученный дифференциал является инвариантом, то есть скаляром, при любых преобразованиях координат, а поскольку  — это вектор, градиент, вычисленный обычным образом, оказывается ковариантным вектором, то есть вектором, представленным в дуальном базисе, какой только и может дать скаляр при простом суммировании произведений координат обычного (контравариантного), то есть вектором, записанным в обычном базисе. Таким образом, выражение (вообще говоря — для произвольных криволинейных координат) может быть вполне правильно и инвариантно записано как:

или, опуская по правилу Эйнштейна знак суммы,

(в ортонормированном базисе мы можем писать все индексы нижними, как мы и делали выше). Однако градиент оказывается настоящим ковариантным вектором в любых криволинейных координатах.

Используя интегральную теорему

,

градиент можно выразить в интегральной форме:

здесь  — замкнутая поверхность охватывающая объём  — нормальный элемент этой поверхности.

Remove ads

Пример

Например, градиент функции будет представлять собой:

Некоторые применения

Суммиров вкратце
Перспектива

Геометрический смысл

Рассмотрим семейство линий уровня функции :

Нетрудно показать, что градиент функции в точке перпендикулярен её линии уровня, проходящей через эту точку. Модуль градиента показывает максимальную скорость изменения функции в окрестности , то есть частоту линий уровня. Например, линии уровня высоты изображаются на топографических картах, при этом модуль градиента показывает крутизну спуска или подъёма в данной точке.

В физике

В различных отраслях физики используется понятие градиента различных физических полей.

Например, напряжённость электростатического поля есть минус градиент электростатического потенциала:

;

напряжённость гравитационного поля (ускорение свободного падения) в классической теории гравитации есть минус градиент гравитационного потенциала:

.

Консервативная сила в классической механике есть минус градиент потенциальной энергии:

.

Диффузионный поток, согласно первому закону Фика, пропорционален градиенту концентрации вещества:

,

где коэффициент диффузии.

Направление вектора , , , перпендикулярно поверхности постоянной величины const, const, const и const, соответственно.

В других естественных науках

Понятие градиента находит применение не только в физике, но и в смежных и даже сравнительно далёких от физики науках (иногда это применение носит количественный, а иногда и просто качественный характер).

Например, градиент концентрации — нарастание или уменьшение по какому-либо направлению концентрации растворённого вещества, градиент температуры — увеличение или уменьшение по какому-то направлению температуры среды и т. д.

Градиент таких величин может быть вызван различными причинами, например, механическим препятствием, действием электромагнитных, гравитационных или других полей или различием в растворяющей способности граничащих фаз.

В экономике

В экономической теории понятие градиента используется для обоснования некоторых выводов и для оптимизации. В частности, используемые для нахождения оптимума потребителя метод множителей Лагранжа и условия Куна — Таккера (позаимствованные из естественных наук) основаны на сопоставлении градиентов функции полезности и функции бюджетного ограничения.

Remove ads

Связь с производной по направлению

Используя правило дифференцирования сложной функции, нетрудно показать, что производная функции по направлению равняется скалярному произведению градиента на единичный вектор :

Таким образом, для вычисления производной скалярной функции векторного аргумента по любому направлению достаточно знать градиент функции, то есть вектор, компоненты которого являются её частными производными.

Remove ads

Градиент в ортогональных криволинейных координатах

Суммиров вкратце
Перспектива

где  — коэффициенты Ламе.

Полярные координаты (на плоскости)

Коэффициенты Ламе:

Отсюда:

Цилиндрические координаты

Коэффициенты Ламе:

Отсюда:

Сферические координаты

Коэффициенты Ламе:

Отсюда:

Remove ads

Вариации и обобщения

Пусть  — отображение между метрическими пространствами. Борелева функция называется верхним градиентом если следующее неравенство

выполняется для произвольной спрямляемой кривой , соединяющей и в .[4]

Remove ads

См. также

Примечания

Литература

Loading content...

Ссылки

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads