Лучшие вопросы
Таймлайн
Чат
Перспективы
Лейкоциты
тип клетки иммунной системы Из Википедии, свободной энциклопедии
Remove ads
Remove ads
Лейкоци́ты (от др.-греч. λευκός — белый и κύτος — вместилище, тело; буквально белые клетки) — неоднородная группа различных по внешнему виду и функциям клеток крови человека и животных, выделенная по признакам наличия ядра и отсутствия самостоятельной окраски. Образуются в красном костном мозге, обнаруживаются во всём организме животного. Продолжительность жизни лейкоцита колеблется от нескольких часов до нескольких лет. Главная функция лейкоцитов — защита организма от патогенов и удаление продуктов разрушения тканей.

Лейкоциты подразделяют по признаку наличия гранул в цитоплазме на гранулоциты и агранулоциты или по происхождению в ходе гемопоэза на миелоидные и лимфоидные клетки. Эти широкие категории включают в себя более специализированные группы лейкоцитов: нейтрофилы, эозинофилы, базофилы, клетки системы мононуклеарных фагоцитов (моноциты, тканевые макрофаги, дендритные клетки) и лимфоциты. К клеткам миелоидного ряда относят нейтрофилы, эозинофилы, базофилы и клетки системы мононуклеарных фагоцитов, к клеткам лимфоидного — лимфоциты. Благодаря способности к фагоцитозу моноциты и нейтрофилы относят к фагоцитам.
Пониженное или повышенное количество лейкоцитов в крови служит важным индикатором наличия патологического процесса. В норме число лейкоцитов у взрослого человека находится в пределах от 4 × 109/л до 1,1 × 1010/л, что составляет около 1 % общего объёма крови. Повышение уровня лейкоцитов (лейкоцитоз) часто происходит при инфекциях, реже — при раковых и иных заболеваниях. Пониженный уровень лейкоцитов (лейкопения) свидетельствует об ослаблении иммунной системы.
Вещества, вызывающие реакцию воспаления, привлекают новые лейкоциты к месту внедрения чужеродных тел. Уничтожая чужеродные тела и поврежденные клетки, лейкоциты гибнут в больших количествах. Гной, который образуется в тканях при воспалении, — это скопление погибших лейкоцитов.
Remove ads
Виды лейкоцитов
Суммиров вкратце
Перспектива
По морфологическим признакам и биологическим функциям лейкоциты подразделяют на гранулоциты, или зернистые лейкоциты, и агранулоциты, или незернистые лейкоциты. Окрашивание гранулоцитов по Романовскому — Гимзе смесью кислого (эозин) и основного (азур II) выявляет в их цитоплазме наличие специфической зернистости (эозинофильной, базофильной или нейтрофильной у эозинофилов, базофилов, нейтрофилов соответственно), а также сегментированные ядра. Агранулоциты (моноциты и лимфоциты) имеют несегментированные ядра и не содержат цитоплазматических гранул. Процентное соотношение разных видов лейкоцитов в крови называют лейкоцитарной формулой, которая имеет важнейшее диагностическое значение[1].
Все лейкоциты — подвижные клетки, перемещающиеся с помощью псевдоподий. При движении лейкоцитов изменяется как форма самой клетки, так и форма её ядра, и лейкоциты могут проходить между клетками эндотелия и эпителия, преодолевать базальные мембраны и перемещаться по межклеточному матриксу соединительной ткани — именно в соединительной ткани они выполняют свои основные защитные функции. На скорость движения лейкоцитов влияют разнообразные химические и физические характеристики окружающей среды (температура, pH, химический состав и консистенция среды), а его направление определяется хемотаксисом под влиянием особых химических веществ (хемоаттрактантов). Главная функция лейкоцитов — защитная. Гранулоциты, в особенности, нейтрофилы и моноциты (а также их тканевая форма — макрофаги) способны к фагоцитозу и являются фагоцитами. Моноциты и макрофаги поглощают инородные вещества и продукты распада клеток и тканей, макрофаги и лимфоциты задействованы в иммунной защите[2].
Нейтрофилы

Нейтрофилы — самые многочисленные лейкоциты крови, на их долю приходится 40—70 % всех лейкоцитов[3]. В мазках крови нейтрофилы имеют диаметр от 12 до 15 мкм. В суспензии человеческие нейтрофилы достигают 7—9 мкм в диаметре[4]. Ядро зрелoго сегментоядерного нейтрофила подразделено на 3—5 сегментов, также в кровотоке присутствует некоторое количество незрелых палочкоядерных нейтрофилов с несегментированным ядром. При окрашивании по Романовскому — Гимзе цитоплазма нейтрофилов окрашивается слабооксифильно. В цитоплазме содержатся специфические[англ.], азурофильные, секреторные и желатиназные[англ.] гранулы, которые содержат белки с антибактериальными свойствами: лактоферрин, щелочная фосфатаза, лизоцим, миелопероксидаза и другие, а также ферменты, генерирующие активные формы кислорода. После фагоцитоза бактерии нейтрофилом она оказывается внутри фагосомы, с которой сливаются гранулы нейтрофила, высвобождая бактерицидные и бактериостатические[англ.] компоненты[5].
Помимо фагоцитоза, антибактериальная активность нейтрофилов проявляется в виде особой формы программируемой клеточной гибели — нетоза. В ходе нетоза погибающий нейтрофил выбрасывает наружу хроматин вместе с бактерицидными белками, за счет чего клетки патогенов обездвиживаются и подвергаются действию антибактериальных белков[6].
Нейтрофилы экспрессируют и продуцируют широкий спектр цитокинов, среди которых хемокины, колониестимулирующие факторы[англ.], провоспалительные цитокины[англ.] (IL-1α, IL-1β, IL-6, IL-7, IL-18, MIF[англ.] и другие), иммунорегуляторные цитокины (IL-12, IL-21[англ.], IL-23[англ.], IL-27[англ.], TSLP[англ.] и другие), противовоспалительные цитокины (IL-1ra, TGFβ1, TGFβ2[англ.]), факторы ангиогенеза и фиброгенеза (VEGF, BV8, HBEGF[англ.], FGF2[англ.], TGFα[англ.], HGF[англ.], ангиопоэтин), цитокины суперсемейства фактора некроза опухоли (TNF) и некоторые другие цитокины, такие как PBEF, амфирегулин[англ.], мидкин, онкостатин M[англ.], активин A[англ.], эндотелин. За счёт выделения разнообразных цитокинов нейтрофилы могут быть вовлечены в процессы, не связанные с иммунной защитой, такие как гемопоэз, ангиогенез и заживление ран. Кроме того, нейтрофилы могут участвовать в развитии некоторых аутоиммунных и злокачественных заболеваний[7].
Базофилы
Базофил в мазке крови
Базофилы являются разновидностью лейкоцитов, которые участвуют в развитии аллергических реакций. Своё название базофилы получили из-за наличия в цитоплазме базофильных гранул. У человека доля базофилов от числа лейкоцитов в крови составляет 0,5 %. Диаметр базофилов в мазке крови составляет 11—12 мкм, в капле крови — 9 мкм[8]. Морфологически базофилы близки не только к другим гранулоцитам, но и к тучным клеткам, с которыми они тесно связаны функционально[9].
Базофильные гранулы, находящиеся в цитоплазме базофилов, содержат гистамин, протеазы химазу[англ.] и триптазу, некоторые другие ферменты, протеогликаны (преимущественно хондроитинсульфаты) и гликозаминогликаны. Базофилы секретируют сравнительно немного активных веществ: лейкотриен C3, интерлейкины IL-4 и IL-13[англ.] и некоторые другие цитокины[9].
Вместе с эозинофилами и нейтрофилами они мигрируют в очаг аллергического воспаления из кровотока. Связывание иммуноглобулинов E с Fc-рецепторами на базофилах активирует их, и базофилы начинают выделять наружу содержимое гранул. Высвобождение содержимого гранул базофилов обеспечивает поддержание аллергического процесса, инициированного тучными клетками[9].
Эозинофилы
Эозинофил в мазке крови
Основная функция эозинофилов заключается в борьбе с многоклеточными паразитами, кроме того, они участвуют в развитии аллергических реакций. Эозинофилы — довольно крупные клетки, достигают от 18 до 20 мкм в диаметре. Зрелые эозинофилы имеют ядро, разделённое на две части (двудольное), и крупные эозинофильные гранулы до 1 мкм в диаметре, содержащие белки с цитотоксическими свойствами. У здорового человека эозинофилы составляют от 0,5 % до 2 % от общего числа лейкоцитов[10].
Эозинофильность гранул в цитоплазме эозинофилов достигается за счёт главного щелочного белка[англ.] (англ. major basic protein, MBP). Главная роль эозинофилов заключается в борьбе с многоклеточными паразитами за счёт внеклеточного цитолиза их клеток. Многие белки, входящие в состав гранул эозинофилов, обладают токсичностью в отношении гельминтов: так, эозинофильный катионный белок встраивается в мембраны их клеток, нарушая их целостность. Эозинофильный катионный белок[англ.] (англ. eosinophilic cationic protein, ECP) и происходящий от эозинофилов нейротоксин[англ.] (англ. eosinophil-derived neurotoxin, EDN) являются РНКазами, а потому играют роль в противовирусной защите. MBP принимает участие в активации тучных клеток и базофилов, поэтому эозинофилы задействованы в развитии аллергических реакций. Кроме того, эозинофилы обладают регулирующей активностью, так как действуют на T-лимфоциты (T-клетки). Эозинофилы задействованы в положительной селекции T-клеток в тимусе, но их роль в этом процессе изучена плохо. Эозинофилы также обладают слабой фагоцитарной активностью. Помимо функций в иммунной системе, эозинофилы регулируют морфогенетические процессы, связанные с половым циклом самок и беременностью[11].
Эозинофилы, подобно другим иммунным клеткам, выделяют разнообразные цитокины, которые, в частности, участвуют в активации T-хелперов типа Th2. Эозинофилы секретируют широкий спектр цитокинов, в их числе IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12[англ.], IL-13[англ.], IL-16[англ.], IL-18, TNFα[англ.], IFNγ, TGFβ, GM-CSF. Помимо того, эозинофилы выделяют некоторые хемокины (эотаксин[англ.] ССL11[англ.], RANTES[англ.] (ССL5), MIP-1α[англ.] (ССL3)), эйкозаноиды (лейкотриены, фактор агрегации тромбоцитов (PAF)) и нейропептиды[12].
Клетки системы мононуклеарных макрофагов
Моноцит в мазке крови
Моноциты, циркулирующие в кровотоке, резидентные макрофаги, локализованные в тканях, и дендритные клетки составляют систему мононуклеарных макрофагов, также известную как ретикулоэндотелиальная система. Эти клетки задействованы не только в работе иммунной системы: они также участвуют в развитии организма (онтогенезе) и удалении продуктов разрушения тканей[13].
У взрослого человека на долю моноцитов приходится 6—8 % общего числа лейкоцитов крови, кроме того, моноциты присутствуют в крови и селезёнке. Моноциты крупнее прочих лейкоцитов: в капле крови их диаметр составляет 9—12 мкм, а в мазке они сильно распластываются, и их диаметр достигает 18—20 мкм[14]. После выхода в кровь моноциты циркулируют в кровотоке 1—2 дня, после чего оседают в тканях и становятся резидентными макрофагами. Тем не менее моноциты сами по себе являются клетками врождённого иммунитета и несут патогенраспознающие рецепторы и рецепторы хемокинов[англ.], благодаря которым они могут перемещаться в очаг воспаления, где они секретируют провоспалительные цитокины и участвуют в фагоцитозе. Находясь в очаге воспаления, моноциты дифференцируются в воспалительные макрофаги и воспалительные дендритные клетки[15].
Часть макрофагов локализуется в определённых участках лимфоидной ткани, таких как медуллярные тяжи лимфатических узлов, красная[англ.] и белая пульпа[англ.] селезёнки. Кроме того, существуют тканевые макрофаги, которые обнаруживаются во всех нелимфоидных органах, где их численность может достигать 10—15 % общего числа клеток. К тканевым макрофагам относятся клетки Купфера в печени, остеокласты костной ткани, микроглия нервной ткани, гистиоциты[англ.] соединительной ткани, клетки Лангерганса кожи, альвеолярные макрофаги[англ.], мезангиальные клетки[англ.] почек, макрофаги слизистых оболочек и серозных полостей, поджелудочной железы, интерстициальной ткани сердца. Макрофаги поддерживают гомеостаз тканей, очищают организм от стареющих и погибших клеток, восстанавливают ткани после повреждений и инфекций. Макрофаги задействованы в работе врождённого иммунитета и несут паттернраспознающие рецепторы, а также обладают разнообразными механизмами уничтожения поглощённых клеток патогенов[16].
Дендритные клетки, получившие своё название из-за наличия отростков, широко представлены в организме. Они многочисленны в покровных тканях, носоглотке, лёгких, кишечнике, желудке, лимфоидных органах, а их незрелые формы присутствуют в кровотоке. Единственная функция дендритных клеток заключается в презентации антигенов и передаче стимулирующих сигналов лимфоцитам. Дендритные клетки захватывают экзогенные антигены, осуществляют его процессинг[англ.] и выставляют фрагменты антигена на своей поверхности в комплексе с молекулами главного комплекса гистосовместимости II класса[англ.] (или I класса[англ.] в случае кросс-презентации[англ.]). В таком виде антиген может быть узнан T-клеточным рецептором. По происхождению дендритные клетки подразделяют на миелоидные, происходящие от моноцитов, и плазмоцитоидные, которые происходят от общей лимфоидной клетки-предшественника[17].
Лимфоциты

Лимфоцит в мазке крови
У взрослого человека лимфоциты составляют 20—35 % всех лейкоцитов. По размеру лимфоциты подразделяют на малые (диаметром 4,5—6 мкм), средние (диаметром 7—10 мкм) и большие (диаметром 10 мкм и более). Большие лимфоциты присутствуют только у новорождённых и детей, у взрослых 85—90 % составляют малые лимфоциты. Лимфоциты имеют интенсивно окрашенное округлое или бобовидное ядро и относительно узкую прослойку базофильной цитоплазмы[18].
Функционально лимфоциты относятся к адаптивной иммунной системе. Лимфоциты — единственный тип клеток в организме млекопитающих, дифференцировка которых сопровождается значительными перестройками генов, кодирующих антигенраспознающие рецепторы. По функциям и строению антиген-распознающих рецепторов лимфоциты подразделяют на T-лимфоциты и B-лимфоциты, также к лимфоцитам относят естественные киллеры, NKT-клетки[англ.] и некоторые другие группы иммунных клеток. Связывание антигенраспознающего рецептора лимфоцита с антигеном необходимо, но ещё недостаточно для запуска иммунного ответа. Помимо антигенраспознающих рецепторов, лимфоциты несут корецепторы, активация которых также необходима для развития иммунного ответа. Лимфоциты распознают антиген либо в нативном состоянии (B-лимфоциты), либо в модифицированном виде на поверхности антигенпрезентирующих клеток (T-лимфоциты). Запуск адаптивного иммунного ответа сопровождается дифференцировкой B-лимфоцитов в плазматические клетки, производящие антитела, в лимфоидных органах. T-клетки, как и B-клетки, выходят из кровотока и мигрируют в очаг воспаления, где непосредственно разрушают заражённые клетки или выделяют цитокины, стимулирующие другие лейкоциты, в том числе макрофаги, эозинофилы и естественные киллеры[19].
Remove ads
Фагоцитоз
Суммиров вкратце
Перспектива

Схема фагоцитоза
Важнейшая функция лейкоцитов — фагоцитоз, то есть поглощение клеткой крупных макромолекулярных комплексов или частиц. Главной функцией фагоцитоз является у четырёх групп лейкоцитов, которые называют «профессиональными» фагоцитами: нейтрофилов, моноцитов, макрофагов и дендритных клеток. Фагоцитоз начинается с миграции лейкоцитов из кровотока в очаг воспаления под действием хемоаттрактантов (хемотаксис), распознавания клеток патогенов и их прикрепления к лейкоцитам. Далее лейкоцит поглощает микроорганизм, и он оказывается внутри вакуоли — фагосомы, с которой сливаются гранулы лейкоцитов, несущие антибактериальные компоненты, в результате чего образуется фаголизосома[англ.]. В фаголизосоме образуются активные формы кислорода и азота (окислительный взрыв[англ.]), под их действием, а также под действием ферментов гранул микроорганизм погибает. Продукты разрушения микрорганизма выбрасываются наружу в ходе экзоцитоза, во время которого мембрана фаголизосомы встраивается обратно в клеточную мембрану. В случае макрофагов и дендритных клеток продукты расщепления антигенов, несомых микроорганизмов, презентируются T-лимфоцитам[20].
Проникновение лейкоцита из кровеносного сосуда в ткань наиболее изучено в случае нейтрофилов и включает стадии качения (роллинга), адгезии, распластывания и диапедеза. В ходе роллинга нейтрофил обратимо связывается с клетками эндотелия за счёт связывания селектинов эндотелиоцитов с гликопротеинами на поверхности лейкоцита. Адгезия включает в себя прочное присоединения нейтрофила к эндотелию за счёт связывания интегринов нейтрофила с иммуноглобулиноподобными[англ.] молекулами на поверхности эндотелия. Эти взаимодействия запускают перестройку цитоскелета нейтрофила, из-за которой происходит его распластывание. Диапедез заключается в проникновении нейтрофила между эндотелиоцитами за счёт взаимодействия специальных молекул на нейтрофиле и клетках эндотелия, а также за счёт выделения нейтрофилом металлопротеиназ[англ.], расщепляющих перемычки между эндотелиоцитами[21].
Remove ads
Развитие
Суммиров вкратце
Перспектива

Схема гемопоэза
Миелопоэз, в ходе которого образуются эритроциты, моноциты, гранулоциты, тромбоциты и предшественники моноцитов, происходит в миелоидной ткани[англ.], которую составляет красный костный мозг, залегающий в эпифизах трубчатых и полостях многих губчатых костей. Предшественники лимфоцитов из костного мозга мигрируют в лимфоидную ткань, расположенную в тимусе, селезёнке, лимфатических узлах[22].
Все форменные элементы происходят из популяции плюрипотентных стволовых кроветворных клеток, находящейся в костном мозге. Существуют две линии дифференцировки стволовых кроветворных клеток. Одна линия даёт начало мультипотентной[англ.] клетке-родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза (эту клетку обозначают КОЕ-ГЭММ). Из второй линии происходит мультипотентная клетка-родоначальница лимфопоэза (КОЕ-Л). КОЕ-ГЭММ и КОЕ-Л дают начало олигопотентным и, далее, унипотентным клеткам-предшественницам. Гранулоциты и моноциты происходят от общей олигопотентной клетки КОЕ-ГМ. Моноциты, нейтрофилы, эозинофилы и базофилы происходят от соответствующих унипотентных клеток — КОЕ-М, КОЕ-Гн, КОЕ-Эо, КОЕ-Б. Плюрипотентные, мультипотентные, олигопотентные и унипотентные клетки-предшественницы морфологически неразличимы[23].
В развитии гранулоцитов (гранулопоэз) после стадии унипотентной клетки следует стадия миелобластов, которые дают начало промиелоцитам — клеткам с базофильной цитоплазмой, на стадии которых начинают появляться азурофильные гранулы. Из промиелоцитов образуются миелоциты, на стадии которых в цитоплазме появляются специфические гранулы и характерная для данного типа гранулоцитов зернистость. Миелоциты дают начало метамиелоцитам, которые, в отличие от клеток всех предыдущих стадий, не делятся. Метамиелоциты дают начало лейкоцитам — юным палочкоядерным и зрелым сегментоядерным. Все миелоциты, особенно дающие начало нейтрофилам, обладают выраженной фагоцитарной активностью, а на стадии метамиелоцита приобретают подвижность[24].
Remove ads
Лейкоциты беспозвоночных
Суммиров вкратце
Перспектива

У беспозвоночных животных лейкоциты (амёбоциты) содержатся в крови, гемолимфе и полостной жидкости. Наиболее многочисленная группа фагоцитов, имеющаяся у многих беспозвоночных, — крупные базофильные незернистые амёбоциты. Они способны к амебоидному движению и демонстрируют положительный хемотаксис к чужеродным поверхностям. Фагоциты беспозвоночных подробно описал Илья Ильич Мечников. Помимо незернистых амёбоцитов, у некоторых беспозвоночных, в частности, у полухордовых, имеется система гранулярных амёбоцитов. В их цитоплазме имеются многочисленные гранулы, а также особые микротрубочковые структуры диаметром 15—20 мкм. По химическому составу гранулы можно разделить на две группы. Гранулы первой группы имеются у амёбоцитов насекомых, ракообразных, асцидий, стрекающих и, вероятно, иглокожих. Эти гранулы содержат мономеры белка, способного к полимеризации, неактивный фермент, запускающий его полимеризацию, фенолы и неактивную в гранулах фенолоксидазу[англ.], а также мукополисахаридный матрикс, поддерживающий неактивное состояние в гранулах указанных ферментов. Активация происходит во время высвобождения содержимого гранул путём экзоцитоза, при этом мономерный белок полимеризуется и формирует плёнку, которую укрепляют хиноны, образующиеся при окислении фенолов фенолоксидазой. Функции гранулярных амёбоцитов различны в разных группах животных. Так, у асцидий благодаря формированию плёнки укрепляется вещество туники[англ.], у насекомых они участвуют в закупорке отверстий в наружных покровах, у ракообразных они обеспечивают инкапсуляцию гиф паразитических грибов. Гранулы второй группы, обнаруженные у приапулид и мечехвостов, не содержат фенолов и фенолоксидазы. У этих животных гранулярные амёбоциты обеспечивают свёртывание гемолимфы и защиту от чужеродных агентов[25].
Remove ads
Клиническое значение
Суммиров вкратце
Перспектива

Состояние, при котором количество лейкоцитов в крови становится менее 4000 в 1 мкл, называется лейкопенией. Чаще всего лейкопения обусловлена снижением количества нейтрофилов в крови — нейтропенией. Причины лейкопении разнообразны. Лейкопения может развиваться под действием ионизирующего излучения, ряда химических веществ (бензола, соединений мышьяка, ДДТ), некоторых лекарственных препаратов (цитостатические препараты, антитиреоидные агенты[англ.], ряд антибиотиков). Лейкопения может возникать как следствие вирусных инфекций, тяжёлых бактериальных инфекций, малярии, коллагенозов. Снижение уровня лейкоцитов также происходит при некоторых заболеваниях крови, таких как гипопластическая анемия и пароксизмальная ночная гемоглобинурия, а также в результате спленэктомии и при острых анафилактических реакциях[26]. Снижение количества лимфоцитов до уровня ниже 1000 в мкл крови известно как лимфоцитопения[англ.] или лимфопения. Как правило, лимфопения обусловлена падением уровня T-лимфоцитов[27].
Повышение содержания лейкоцитов в крови до 10 000 и более в мкл известно как лейкоцитоз. Резкое повышение уровня лейкоцитов до 20 000 в мкл крови называют гиперлейкоцитозом. Как правило, лейкоцитоз связан с увеличением количества нейтрофилов. Повышение содержания нейтрофилов в крови происходит как при нормальных физиологических реакциях (стресс, приём пищи и другие), так и при патологических процессах: инфекциях, интоксикациях, появлении злокачественных новообразований и других. Нейтрофилы в большом количестве содержатся в гное[28]. Повышение уровня эозинофилов в крови наблюдается при аллергических реакциях немедленного типа, бронхиальной астме, эозинофильной пневмонии, миелоидном лейкозе[англ.], а также при синдроме Лёффлера[англ.]. Содержание базофилов в крови выше нормы поднимается редко. Базофильный лейкоцитоз может наблюдаться при микседеме, неспецифическом язвенном колите, аллергических реакциях, а также во время беременности. Увеличение уровня лимфоцитов в крови наблюдается при некоторых острых и хронических инфекциях: коклюше, туберкулёзе, сифилисе, бруцеллёзе, инфекционном мононуклеозе. Моноцитарный лейкоцитоз — редкое состояние, оно может наблюдаться при бактериальных и протозойных инфекциях, а также при раковых заболеваниях, саркоидозе и коллагенозах[29].
Нарушения гемопоэза, отражающиеся на количестве и некоторых свойствах лейкоцитов, часто сопровождают гемобластозы — злокачественные преобразования клеток крови, костного мозга, лимфы и лимфоидной ткани. Опухоли, сопровождающиеся избыточным количеством клеток миелоидного происхождения, известны как миелопролиферативные неоплазии[англ.]. К их числу относят, в частности, хронический миелоидный лейкоз, хронический нейтрофильный лейкоз[англ.] и хронический эозинофильный лейкоз[англ.][30]. Чрезмерная пролиферация лимфоидных клеток происходит при таких неоплазиях, как фолликулярная лимфома[31], хронический лимфолейкоз[32], острый лимфобластный лейкоз[33] и миеломная болезнь[34].
Remove ads
История изучения
Суммиров вкратце
Перспектива

Пауль Эрлих
Изучение форменных элементов крови стало возможным после изобретения сложного микроскопа Захарием Янсеном около 1590 года. Хотя эритроциты были описаны ещё в 1658 году, лейкоциты долго оставались без внимания исследователей из-за своей относительной, по сравнению с эритроцитами, немногочисленности и прозрачности. Первое описание белых клеток крови выполнил французский врач Жозеф Льето в 1749 году в посмертном материале, и в том же году другой французский доктор, Жан Батист Сенак, открыл белые клетки в составе гноя. Первое подробное описание форменных элементов крови и лимфы выполнил английский хирург Уильям Хьюсон[англ.] в 1773 году. Он отметил, что белые клетки крови гораздо менее многочисленны по сравнению с красными. Кровь больного лейкозом впервые описал Альфред Франсуа Донне[англ.] в 1839 году, отметив резкое увеличение количество в ней белых клеток. В 1843 году Уильям Эддисон[англ.] показал, что белые клетки, входящие в состав гноя, происходят от лейкоцитов крови. В 1863 году ассистент Рудольфа Вирхова Фридрих Даниель фон Реклингхаузен описал амёбоидные свойства лейкоцитов — подвижность и способность к формированию псевдоподий. Чуть позднее Юлиус Фридрих Конгейм показал, что лейкоциты могут проникать через стенки капилляров за счёт амёбоидного движения. В 1879 году Пауль Эрлих разработал методы окрашивания клеток крови и выполнил их детальные морфологические описания. Кислые и основные красители, разработанные Эрлихом, позволили описать эозинофилы, нейтрофилы, базофилы и лимфоциты[35]. Фагоцитоз был детально изучен и назван Ильёй Ильичом Мечниковым в 1882 году, когда им же была установлена роль фагоцитов в защите от бактерий[36]. В 1908 году Пауль Эрлих и Илья Мечников разделили Нобелевскую премию по физиологии и медицине[37].
Remove ads
Примечания
Литература
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads