Najlepsze pytania
Chronologia
Czat
Perspektywa
Układ współrzędnych kartezjańskich
podstawowy typ układów współrzędnych, oparty na prostopadłych osiach liczbowych Z Wikipedii, wolnej encyklopedii
Remove ads
Układ współrzędnych kartezjańskich, prostokątny układ współrzędnych[potrzebny przypis] – prostoliniowy układ współrzędnych, którego osie są parami prostopadłe[1].

Pewne cechy takiego układu mają szachownica znana od starożytności oraz pochodzące z XVI wieku odwzorowanie Mercatora. W 1636 roku prostokątnego układu współrzędnych używał Pierre de Fermat, jednak nie opublikował tych prac, przez co pozostały nieznane. Kartezjusz (fr. René Descartes) opracował to niezależnie i opublikował w 1637 roku w traktacie La Géométrie[2] – stąd nazwa; francuski przymiotnik to cartesien. Wywołało to spór o pierwszeństwo z Fermatem, jednak zakończył się on pogodzeniem obu uczonych i wzajemnym uznaniem zasług[3].
Remove ads
Definicja
Układem współrzędnych kartezjańskich w przestrzeni n-wymiarowej nazywa się układ współrzędnych, w którym zadane są:
- punkt zwany początkiem układu współrzędnych, którego wszystkie współrzędne są równe zeru, oznaczany literą (ang. origin – źródło, początek),
- ciąg n parami prostopadłych osi liczbowych zwanych osiami układu współrzędnych. Dwie pierwsze osie często oznaczane są jako:
- (pierwsza oś, zwana osią odciętych),
- (druga, zwana osią rzędnych).
Liczba osi układu współrzędnych wyznacza wymiar przestrzeni.
Remove ads
Wykresy funkcji
Za pomocą układu współrzędnych kartezjańskich można tworzyć wykresy funkcji jednoargumentowych postaci:
np.
przedstawia funkcję liniową. Podstawiając pod wartości, otrzymujemy drugą współrzędną
Remove ads
Współrzędne
Aby wyznaczyć k-tą współrzędną zadanego punktu
- Tworzymy rzut prostokątny punktu na k-tą oś, tzn. konstruujemy prostą przechodzącą przez i prostopadłą do k-tej osi, a następnie znajdujemy punkt przecięcia tej prostej z k-tą osią.
- Współrzędna tego punktu przecięcia na k-tej osi jest k-tą współrzędną punktu
Trzy pierwsze współrzędne są często oznaczane jako:
Wzory w 2-wymiarowym układzie współrzędnych
- Współrzędne środka odcinka AB oznaczonego literą C, kiedy
- odległość punktu A od środka układu współrzędnych dla
- Długość odcinka AB dla
- lub
Remove ads
Ćwiartki i oktanty

Osie dwuwymiarowego układu kartezjańskiego dzielą płaszczyznę na cztery przystające, nieograniczone zbiory nazywane ćwiartkami; brzeg każdej z nich składa się z dwóch półosi[a]. Często numeruje się je od pierwszej do czwartej i oznacza symbolami rzymskimi: I (+,+), II (–,+), III (–,–) oraz IV (+,–), gdzie znaki w nawiasach odpowiadają znakom danej współrzędnej. Przy zwyczajowym rysowaniu osi, numeracja rozpoczyna się od prawej-górnej ćwiartki („północno-wschodniej”) i postępuje przeciwnie do ruchu wskazówek zegara.
Podobnie trójwymiarowy układ współrzędnych określa podział przestrzeni na osiem części zwanych oktantami[4], zgodnie z ośmioma sposobami ułożenia dwóch znaków +,– na trzech miejscach. Oktant, którego wszystkie trzy współrzędne są dodatnie, nazywany bywa pierwszym, jednak nie ma ogólnie przyjętej numeracji pozostałych oktantów. Uogólnienie ćwiartki i oktantu na wyższe wymiary nazywane bywa ortantem[5].
Remove ads
Skrętność przestrzeni trójwymiarowej[6]

Kartezjański układ współrzędnych w przestrzeni trójwymiarowej może być lewo- lub prawoskrętny.
Układ współrzędnych nazywa się prawoskrętnym, jeżeli zginając palce prawej dłoni zakreśla się mniejszy łuk od osi do przy czym kciuk jest stale ustawiony zgodnie ze zwrotem osi (tzw. reguła prawej dłoni Royberta albo reguła śruby prawoskrętnej).
W ten sposób skrętność układu wyznaczamy posługując się prawą ręką człowieka.
Remove ads
Zobacz też
Uwagi
- Nie jest to jednak podział na podzbiory rozłączne; takiego podziału na cztery części przystające nie da się dokonać, bowiem początek układu musiałby należeć do jednej tylko części.
Przypisy
Bibliografia
Linki zewnętrzne
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads