Loading AI tools
Z Wikipedii, wolnej encyklopedii
Układ współrzędnych kartezjańskich, prostokątny układ współrzędnych[potrzebny przypis] – prostoliniowy układ współrzędnych, którego osie są parami prostopadłe[1].
Pewne cechy takiego układu mają szachownica znana od starożytności oraz pochodzące z XVI wieku odwzorowanie Mercatora. W 1636 roku prostokątnego układu współrzędnych używał Pierre de Fermat, jednak nie opublikował tych prac, przez co pozostały nieznane. Kartezjusz (fr. René Descartes) opracował to niezależnie i opublikował w 1637 roku w traktacie La Géométrie[2] – stąd nazwa; francuski przymiotnik to cartesien. Wywołało to spór o pierwszeństwo z Fermatem, jednak zakończył się on pogodzeniem obu uczonych i wzajemnym uznaniem zasług[3].
Układem współrzędnych kartezjańskich w przestrzeni n-wymiarowej nazywa się układ współrzędnych, w którym zadane są:
Liczba osi układu współrzędnych wyznacza wymiar przestrzeni.
Za pomocą układu współrzędnych kartezjańskich można tworzyć wykresy funkcji jednoargumentowych postaci:
np.
przedstawia funkcję liniową. Podstawiając pod wartości, otrzymujemy drugą współrzędną
Aby wyznaczyć k-tą współrzędną zadanego punktu
Trzy pierwsze współrzędne są często oznaczane jako:
Osie dwuwymiarowego układu kartezjańskiego dzielą płaszczyznę na cztery przystające, nieograniczone zbiory nazywane ćwiartkami; brzeg każdej z nich składa się z dwóch półosi[uwaga 1]. Często numeruje się je od pierwszej do czwartej i oznacza symbolami rzymskimi: I (+,+), II (–,+), III (–,–) oraz IV (+,–), gdzie znaki w nawiasach odpowiadają znakom danej współrzędnej. Przy zwyczajowym rysowaniu osi, numeracja rozpoczyna się od prawej-górnej ćwiartki („północno-wschodniej”) i postępuje przeciwnie do ruchu wskazówek zegara.
Podobnie trójwymiarowy układ współrzędnych określa podział przestrzeni na osiem części zwanych oktantami[4], zgodnie z ośmioma sposobami ułożenia dwóch znaków +,– na trzech miejscach. Oktant, którego wszystkie trzy współrzędne są dodatnie, nazywany bywa pierwszym, jednak nie ma ogólnie przyjętej numeracji pozostałych oktantów. Uogólnienie ćwiartki i oktantu na wyższe wymiary nazywane bywa ortantem[5].
Kartezjański układ współrzędnych w przestrzeni trójwymiarowej może być lewo- lub prawoskrętny.
Układ współrzędnych nazywa się prawoskrętnym, jeżeli zginając palce prawej dłoni zakreśla się mniejszy łuk od osi do przy czym kciuk jest stale ustawiony zgodnie ze zwrotem osi (tzw. reguła prawej dłoni Royberta albo reguła śruby prawoskrętnej).
W ten sposób skrętność układu wyznaczamy posługując się prawą ręką człowieka.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.