Czworościan foremny a. tetraedr (z gr.)[1]czworościan, którego ścianyprzystającymi trójkątami równobocznymi. Jeden z pięciu wielościanów foremnych. Ma 6 krawędzi i 4 wierzchołki. Czworościan foremny jest przykładem trójwymiarowego sympleksu. Czworościan foremny jest dualny do samego siebie. Kanoniczne współrzędne wierzchołków czworościanu mają postać (1, 1, 1), (−1, −1, 1), (−1, 1, −1) i (1, −1, −1).

Thumb
Czworościan foremny
Thumb
Thumb
Przykładowe siatki czworościanu foremnego
Thumb
Kostka do gry w kształcie czworościanu (stosowana m.in. w grach fabularnych)
Thumb
Siatka czworościanu foremnego z zakładkami umożliwiającymi sklejenie

Czworościan foremny może być wpisany w sześcian na dwa sposoby tak, aby każdy jego wierzchołek pokrywał się z jakimś wierzchołkiem sześcianu, a każda jego krawędź z przekątną jednej ze ścian sześcianu. Objętość każdego z tych czworościanów wynosi 1/3 objętości sześcianu. Suma mnogościowa tych dwóch czworościanów tworzy wielościan zwany stella octangula, a ich część wspólna tworzy ośmiościan foremny.

Czworościany foremne wraz z ośmiościanami foremnymi wystarczą do wypełnienia całej przestrzeni[uwaga 1]. Ścinając wszystkie wierzchołki czworościanu w 1/3 długości krawędzi, uzyskujemy wielościan półforemny o nazwie czworościan ścięty.

Wzory i własności

W poniższych wzorach oznacza długość krawędzi czworościanu foremnego.

Pole powierzchni całkowitej:

Objętość:

Wysokość, czyli odległość od dowolnego wierzchołka do środka przeciwległej ściany:

Miara kąta nachylenia krawędzi do ściany, w której krawędź się nie zawiera:

Promień kuli opisanej:

Promień kuli wpisanej:

Promień kuli stycznej do krawędzi czworościanu:

Zależności między promieniami

[uwaga 2],

Miara kąta między ścianami:

Czworościan foremny ma:

  • 6 płaszczyzn symetrii, każda z nich przechodzi przez jedną z jego krawędzi i środek przeciwległej krawędzi,
  • 3 osie symetrii, każda z nich przechodzi przez środki przeciwległych krawędzi,
  • 4 osie obrotu, każda z nich przechodzi przez wierzchołek czworościanu i środek przeciwległej ściany.

Zobacz też

Uwagi

  1. Arystoteles błędnie sądził, że wystarczą czworościany.
  2. Wzory te są 3-wymiarową kontynuacją wzorów dla trójkąta równobocznego, w których promień okręgu opisanego jest jego wysokości a promień okręgu wpisanego jest jego wysokości, patrz ogólna zależność dla sympleksów.

Przypisy

Linki zewnętrzne

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.