Remove ads
Z Wikipedii, wolnej encyklopedii
Cykl superkontynentalny, nazywany również cyklem Wilsona (od nazwiska J.T. Wilsona – twórcy koncepcji uskoków transformacyjnych) – powtarzająca się sekwencja zdarzeń związanych z wędrówką kontynentów (zob. tektonika płyt), prowadzących do okresowego powstawania superkontynentu, a następnie jego rozpadu na fragmenty, które oddalają się od siebie w miarę tworzenia się nowej płyty oceanicznej z równoczesnym przetapianiem starej w strefach subdukcji. Jeden okres cyklu trwa prawdopodobnie ok. 300–500 mln lat[2][3][4][5]. Szacuje się, że superkontynent rozpada się po ok. 100 mln lat od powstania; jego fragmenty oddalają się od siebie przez ok. 200 mln lat, aby – po przemieszczeniach – ponownie skupić się w nowy superkontynent[3].
Historia Ziemi obejmuje okres ok. 4,6 mld lat, historia litosfery ponad 4,0 mld lat, a historia badań Ziemi przez człowieka, szacowana od prawdopodobnej daty pierwszych odkryć geograficznych (np. dotarcie Egipcjanina Harchufa do Nubii w XXIII wieku p.n.e.) – zaledwie ok. 4 tys. lat.
Skorupa ziemska powstała niedługo (w geologicznej skali czasu) po uformowaniu się globu – zakończeniu intensywnej akrecji planetozymali w dysku protoplanetarnym Układu Słonecznego. Wewnątrz gorącej protoplanety zachodziły procesy grawitacyjnej segregacji zgromadzonego materiału – produktów długiego i złożonego procesu powstawania pierwiastków chemicznych. W wyniku zapadania w głąb cięższych pierwiastków „szybko” powstało metaliczne jądro Ziemi (Nife, m.in. Ni i Fe), ziemski płaszcz, pierwsze kratony i cała skorupa, podobna do współczesnej. W płaszczu i skorupie wyodrębnia się warstwy:
Do najwcześniejszych kratonów należały prawdopodobnie skały znalezione w formacji Nuvvuagittuq (w okolicach zatoki Hudsona) przez Jonathana O'Neila z McGill University i Richarda Carlsona z Carnegie Institution's Department of Terrestrial Magnetism w Kanadzie. Wiek próbek oszacowano na 3,8–4,28 mld lat[6]. Starsze minerały znaleziono wcześniej w Zachodniej Australii, m.in. w Jack Hills. Ziarna cyrkonów, wbudowane w strukturę młodszych skał, datowano na 4,4 mld lat[7]. Wszystkie skały płyt oceanicznych są wielokrotnie młodsze – fragmenty najstarsze mają mniej niż 0,2 mld lat[2].
Skorupa stanowi niewielką część masy Ziemi – płyty oceaniczne (Sima) mają grubość zaledwie ok. 5–12 km, a płyty kontynentalne (Sial) – ok. 70–80 km. Są to wartości bardzo małe w porównaniu z promieniem Ziemi (niemal 6400 km). Skały skorupy ulegają cyklicznym przemianom, które tworzą cykl skalny. Do zmian właściwości skorupy prowadzą też procesy zachodzące z udziałem materiału głębszych warstw płaszcza. Konwekcja powoduje nieustanne przemieszczanie się magmy; gorący strumień wznoszący dostarcza z głębszych warstw ciepło i nowe pierwiastki ciężkie. W astenosferze ochłodzony strumień magmy przenosi leżące na nim części sztywnej skorupy; równocześnie zachodzi krystalizacja nowych minerałów (dyferencjacja magmowa), prowadząca m.in. do zmian gęstości płyty oceanicznej (zob. też pióropusz płaszcza)[8]. Szybkość przesuwania się płyt skorupy jest zróżnicowana, np. w przypadku płyty oceanicznej Atlantyku wynosi 0,7–0,9 cm/rok, a w przypadku płyty Pacyfiku kilkakrotnie więcej (np. Hawaje przemieszczają się w kierunku Japonii z szybkością ok. 8 cm/rok)[9].
Wiedza na temat budowy i dynamiki litosfery była gromadzona przez pokolenia podróżników rejestrujących kształty odkrywanych kontynentów, geologów tworzących mapy geologiczne, mineralogów (topomineralogia, mineralogia genetyczna), litostratygrafów, geochemików i geofizyków, paleontologów, stratygrafów, biostratygrafów. Dzięki wynikom tych badań stało się możliwe odszyfrowanie informacji o ostatnich 542 mln lat historii skał i kontynentów – fanerozoiku (paleozoik, mezozoik i kenozoik. Już w XIX w. zaczęły powstawać teorie geotektoniczne. Na początku XX w. Alfred Wegener sformułował hipotezę dotyczącą powstania współczesnych kontynentów z superkontynentu nazwanego Pangea („Wszechziemia”); opierał się przede wszystkim na zaobserwowanym podobieństwie kształtu kontynentów, zgodności formacji skalnych na odpowiadających sobie wybrzeżach i danych dot. rozmieszczenia gatunków (biostratygrafia). Hipoteza Wegenera została potwierdzona w drugiej połowie XX w. m.in. przez Johna T. Wilsona, Allana V. Coxa i innych z użyciem nowych technik badawczych – metod magnetometrii i izotopowego datowania skał. Teoria wędrówki płyt tektonicznych (tektoniki płyt) zyskała niemal powszechne uznanie[a]. Umożliwiła sformułowanie kolejnej hipotezy, dotyczącej cyklicznego występowania sekwencji zdarzeń, polegających na powstawaniu i rozpadzie superkontynentów (cykle nazywane superkontynentalnymi lub „cyklami Wilsona”[8].
Podstawowymi procesami geologicznymi, najprawdopodobniej spowodowanymi współcześnie konwekcją w płaszczu, są spreading i subdukcja. Charakterystyczne efekty procesów spreadingu obserwuje się obecnie m.in.:
Jednym z przykładów subdukcji jest przetapianie wciskanej pod kontynentalną płytę południowoamerykańską oceanicznej płyty Nazca (zob. Rów Atakamski), zachodzące równocześnie z wypiętrzaniem Andów. Podobne strefy subdukcji występują w całym „ognistym pierścieniu” otaczającym Ocean Spokojny, utworzonego przez system rowów, m.in. Rów Tonga, Rów Bougainville’a, Rów Filipiński, Rów Mariański, Rów Japoński, Rów Kurylsko-Kamczacki, Rów Środkowoamerykański. Intensywna subdukcja jest przyczyną regionalnej aktywności sejsmicznej i wulkanicznej.
Trudniej zauważalnym efektem subdukcji jest zbliżanie się kontynentów, znajdujących się na sąsiednich płytach, prowadzące do zaniku rozdzielającego je morza (np. Morze Śródziemne), a ostatecznie do ich zderzenia i utworzenia gór fałdowych (np. Himalaje).
Badania zjawisk zachodzących współcześnie oraz tych, których ślady są najlepiej zachowane w skałach, umożliwiły stosunkowo dokładne opisanie procesów powstawania Pangei, jej rozpadu i uformowania się współczesnych kontynentów i oceanów[10]. Stało się to podstawą dla prób interpretacji mniej wyraźnych śladów wcześniejszych przemian. Podjęto próby wyjaśnienia przyczyn stosunkowo regularnych zmian kierunku ruchu kontynentów względem siebie – oddalania się i zbliżania. Uważa się, że płyta oceaniczna typu atlantyckiego – rosnąca wskutek spreadingu, lecz nie otoczona strefami subdukcji – może istnieć nie dłużej niż 400 mln lat, ponieważ po ok. 200 mln lat jej gęstość staje się większa od gęstości astenosfery i rozpoczyna się jej zapadanie i pochłanianie w nowym „ognistym pierścieniu”. Przypuszcza się, że łączenie się kontynentów miało miejsce 2,7–2,5, 2,1–2,0, 1,7–1,5 i 1,1–1,0 mld lat temu, o czym świadczą intensywne w tych okresach orogenezy wewnętrzne[3]. Doświadczalna weryfikacja tworzonych modeli cyklu jest niezwykle trudna, nawet w odniesieniu do procesu powstawania Pangei z fragmentów powstałych w czasie rozpadu superkontynentu Rodinia[2][3].
Pierwsze hipotetyczne kontynenty nazwano Walbara (> 3,6 mld lat temu) i Ur (ok. 3,6 do ok. 2,8 mld lat temu). Były prawdopodobnie mniejsze od dzisiejszych kontynentów; ich pozostałości są odnajdywane m.in. na terenie dzisiejszych Indii, Madagaskaru, Australii[11]. Ostatni z superkontynentów – Pangea – istniał od ok. 300 mln do ok. 180 mln lat temu, a poprzedzająca go Rodinia prawdopodobnie od ok. 1100 do ok. 750 mln lat temu[b]. Przypuszcza się, że między dwoma wymienionymi mógł istnieć jeszcze superkontynent Pannocja (co jest kontrowersyjne)[11].
Jeżeli założenia specjalistów tworzących modele cyklu superkontynentalnego są poprawne, to dziś istniejące kontynenty utworzą kolejny superkontynent za ok. 250 mln lat (zob. Pangea Proxima, Novopangea, Amazja[12][13]), co spowoduje duże zmiany klimatyczne, podobne do zachodzących w czasie powstawania poprzednich superkontynentów
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.