Loading AI tools
原子番号14の元素 ウィキペディアから
ケイ素(けいそ、珪素、硅素、英: silicon、羅: silicium)は、原子番号14の元素である。元素記号はSi。原子量は28.1。「シリコン」とも呼ばれる。
| |||||||||||||||||||||||||||||||
外見 | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
金属光沢のある暗灰色 ケイ素のスペクトル線 | |||||||||||||||||||||||||||||||
一般特性 | |||||||||||||||||||||||||||||||
名称, 記号, 番号 | ケイ素, Si, 14 | ||||||||||||||||||||||||||||||
分類 | 半金属 | ||||||||||||||||||||||||||||||
族, 周期, ブロック | 14, 3, p | ||||||||||||||||||||||||||||||
原子量 | 28.0855(3) | ||||||||||||||||||||||||||||||
電子配置 | [Ne] 3s2 3p2 | ||||||||||||||||||||||||||||||
電子殻 | 2, 8, 4(画像) | ||||||||||||||||||||||||||||||
物理特性 | |||||||||||||||||||||||||||||||
相 | 固体 | ||||||||||||||||||||||||||||||
密度(室温付近) | 2.3290 g/cm3 | ||||||||||||||||||||||||||||||
融点での液体密度 | 2.57 g/cm3 | ||||||||||||||||||||||||||||||
融点 | 1687 K, 1414 °C, 2577 °F | ||||||||||||||||||||||||||||||
沸点 | 2628 K, 2355[1] °C, 4271 °F | ||||||||||||||||||||||||||||||
融解熱 | 50.21 kJ/mol | ||||||||||||||||||||||||||||||
蒸発熱 | 359 kJ/mol | ||||||||||||||||||||||||||||||
熱容量 | (25 °C) 19.789 J/(mol·K) | ||||||||||||||||||||||||||||||
蒸気圧 | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
原子特性 | |||||||||||||||||||||||||||||||
酸化数 | 4, 3 , 2 , 1[2] −1, −2, −3, −4 (両性酸化物) | ||||||||||||||||||||||||||||||
電気陰性度 | 1.90(ポーリングの値) | ||||||||||||||||||||||||||||||
イオン化エネルギー | 第1: 786.5 kJ/mol | ||||||||||||||||||||||||||||||
第2: 1577.1 kJ/mol | |||||||||||||||||||||||||||||||
第3: 3231.6 kJ/mol | |||||||||||||||||||||||||||||||
原子半径 | 111 pm | ||||||||||||||||||||||||||||||
共有結合半径 | 111 pm | ||||||||||||||||||||||||||||||
ファンデルワールス半径 | 210 pm | ||||||||||||||||||||||||||||||
その他 | |||||||||||||||||||||||||||||||
結晶構造 | 立方晶系 | ||||||||||||||||||||||||||||||
磁性 | 反磁性[3] | ||||||||||||||||||||||||||||||
電気抵抗率 | (20 °C) 103 [4]Ω⋅m | ||||||||||||||||||||||||||||||
熱伝導率 | (300 K) 149 W/(m⋅K) | ||||||||||||||||||||||||||||||
熱膨張率 | (25 °C) 2.6 μm/(m⋅K) | ||||||||||||||||||||||||||||||
音の伝わる速さ (微細ロッド) |
(20 °C) 8433 m/s | ||||||||||||||||||||||||||||||
ヤング率 | 185[4] GPa | ||||||||||||||||||||||||||||||
剛性率 | 52[4] GPa | ||||||||||||||||||||||||||||||
体積弾性率 | 100 GPa | ||||||||||||||||||||||||||||||
ポアソン比 | 0.28[4] | ||||||||||||||||||||||||||||||
モース硬度 | 7 | ||||||||||||||||||||||||||||||
CAS登録番号 | 7440-21-3 | ||||||||||||||||||||||||||||||
バンドギャップ energy at 300 K | 1.12 eV | ||||||||||||||||||||||||||||||
主な同位体 | |||||||||||||||||||||||||||||||
詳細はケイ素の同位体を参照 | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
1787年に、アントワーヌ・ラヴォアジエが「silicon」と名付けた。ラテン語の「silex」「silicis」(燧石)にちなむ。のちに、宇田川榕庵が「舎密開宗」で「珪土」をケイ素(シリコン)の訳語とした。オランダ語のシリコンは「keiaarde」であり、「keisteen-aarde」(火打石の土)の短縮形であるため、玉偏の同音字「珪」(けい、「圭」の異体字)で音写した。のちに「硅」も出現したが、「珪素」が基準となった[要出典]。中国名の「硅」はこの日本の音写由来であると考えられる[注 1]が、発音はguī(グイ)と日本とは異なり[注 2]、また台湾においては旧来[注 3]の「矽」(xī、シー)が21世紀初頭現在においても用いられている[5]。
標準状態で安定な結晶構造はダイヤモンド構造。比重2.33、融点1410 °C(1420 °C)、沸点 2600 °C(ほかに2355 °C、3280 °Cという実験値あり)。ダイヤモンド構造のケイ素は、1.12 eVのバンドギャップ(実験値)をもつ半導体である。これは非金属元素であるが、圧力(静水圧)を加えると、βスズ構造に構造相転移する。このβスズ構造のケイ素は金属である。更にケイ素には、シリセンという、ケイ素原子が環状に6個結びついた同素体がある。周期表において、すぐ上の元素は炭素だが、その常温・常圧での安定相であるグラファイト構造は、ケイ素においては安定な構造として存在できない。
ケイ素は、地球の主要な構成元素のひとつである。地球地殻の質量の74.32 %は酸素(46.60%)とケイ素(27.72%)で占められており[注 4]、石英の成分であるSiO2が地殻の大部分を構成している[7]。地殻の造岩鉱物の92 %はSiO4の四面体を結晶構造の基本単位とするケイ酸塩鉱物である[7]。
1787年に、アントワーヌ・ラヴォワジエが初めて元素として記載した。しかしラヴォワジエは、燧石そのものを元素だと思っていた。
1800年に、ハンフリー・デービーの研究によって燧石は化合物だったことが判明した。
1811年に、ジョセフ・ルイ・ゲイ=リュサックとルイ・テナールが、のちのベルセリウスと同様の方法でアモルファスシリコンの分離に成功したと考えられている。
1823年に、イェンス・ベルセリウスが四フッ化ケイ素とカリウムを加熱して単離に成功した。
バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量ドープさせることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999%(15N[注 5])まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。
ケイ素は赤外域(波長2–6 μm)で高い透過率があり、レンズや窓の素材に用いられる。波長4 μmの屈折率は3.4255[8]。
四塩化ケイ素やトリクロロシランから作られる高純度ケイ素の塊(シリコンウェハー)は、半導体素子に用いられる。また、液晶ディスプレイのTFTやソーラーパネルには、アモルファスシリコンや多結晶シリコンなどが用いられる。ヒ化ガリウムや窒化ガリウムなどの化合物半導体の基板にシリコンを用いれば、大幅な低価格化が可能であり、さまざまな研究や実用化が進められている。
電気炉における製鉄材料として鉄1トンあたり4 kg前後のケイ素が添加されるほか、ケイ素合金として製鉄の脱酸素剤に用いられる。そのほかに、ケイ素を混ぜた鋼板(ケイ素鋼板)は、うず電流による損失が少なくなるため、変圧器に使われている。アルミニウム工業の分野でもケイ素の合金が使われている。また、鉛レス黄銅にも添加される。
ケイ素の酸化物(シリカ)を原料とするガラスは、窓などで使われるほか、繊維状にしたグラスウールは断熱材や吸音材としても用途がある。ゼオライトは、イオン交換体、吸着剤あるいは、有機化学工業における触媒ともなっている。シリカゲルは、非常に利用しやすい乾燥剤になる。
炭化ケイ素は、耐火材や抵抗体として使われたり、高いモース硬度(9.5)を持つために研磨剤として使われたりする。そのほかのケイ素化合物として、アルミノケイ酸塩が粘土に含まれ、陶器やセメント・煉瓦などセラミックスと呼ばれる材料の主成分になっているほか、カルシウム化合物を除去する働きから、水の精製に使われるなどしている。
ケイ素の単結晶は半導体材料として工業上重要であるため、もっとも高純度・低欠陥な結晶が実現されている材料のひとつである。このことから、28Siのほぼ無欠陥な単結晶により真球を作成し、この真球からアボガドロ定数の正確な値と、1 キログラムを構成するのに必要な原子の個数を決定する試みが行われた[9]。2019年5月20日よりアボガドロ定数は6.02214076×1023 mol−1という定義値として施行されることになった。
ケイ素は鉄と違って軽いうえ磁性を帯びないため、機械式時計の部品(ゼンマイ、ガンギ車など)の素材としても用いられるようになっている。最初に実用化に成功したのはスイス・ユリス・ナルダンの『フリーク』(2001年)[10]で、以降スイスの高級時計メーカーで採用が進められている。日本では、2021年にセイコーエプソンがプリンターヘッドの製造技術を応用し、「オリエントスター」ブランドで初めて発売に踏み切った[11]。
ただし、製造にはLIGAやMEMSなど高度な成型技術が必要なうえ、壊れやすいため歩留り率が低いなど、実用化されてから日が浅いため欠点や不明な点が多く、採用しないメーカーも多い。
前述のように、ケイ酸塩はさまざまな形で地殻上に存在しており、天然に存在するケイ素化合物のほとんどが、二酸化ケイ素およびケイ酸塩である。工業的にも広く用いられ、ガラス、陶磁器、肥料など、枚挙に暇がない。
アスベストは、繊維状のケイ酸塩鉱物であり、耐薬品性や耐火性から以前は建材などに広く用いられたが、中皮腫が問題になったため、使用量は激減している。日本でもアスベストによる健康被害が社会問題となり、労災認定や健康被害を受けた人に対しての補償問題、また、依然として既存建築物に多く残るアスベストの撤去問題を抱える。
有機基を有するケイ素二次元および三次元酸化物は、シリコーンと呼ばれる。このものは、優れた耐熱性、耐薬品性、低い毒性などの有用な性質を示し、油状のものはワックス、熱媒体、消泡剤などに用いられる。三次元シリコーンはゴム弾性を示し、ゴム状のものはホースやチューブ、樹脂状のものは塗料や絶縁材、接着剤など各種の用途に利用される。
工業用ケイ素の主原料は、SiO2からなる二酸化ケイ素(珪石、石英、シリカとも)である。日本国内の埋蔵量は2億トンあるとされるが、アルミニウムと同様、酸化物から還元するには大量の電力を必要とするため、金属シリコンの状態になってから輸入するのが一般的である。
世界の二酸化ケイ素の埋蔵量はきわめて潤沢であり、高純度のものも世界に広く分布する[12]。二酸化ケイ素#埋蔵量を参照。
生物として知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性は詳しく分かっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。[要出典]
ケイ素は必須元素ではなくラットや鳥など一部を除き多くの動物の体内には殆ど蓄積しない。ヒトが経口摂取したケイ素の殆どは吸収されずそのまま便として排出され[21]、一部は僅かに水に溶けオルトケイ酸となり腸で吸収される。ケイ素は血中では可溶性のオルトケイ酸として存在するが、タンパク質等の高分子化合物と結合することなく尿として排出される。そのため特に人体に影響はない。しかし、ケイ素の摂取でシリカ結石となる場合があり、三ケイ酸マグネシウムの長期摂取による発症や、シリカを多く含む湧き水(172mg Si/L)により10ヶ月の乳児がシリカ結石になった症例が報告されているなどとり過ぎには注意が必要である[22]
JECFA(FAO/WHO合同食品添加物専門家会議)では二酸化ケイ素(シリカ)やケイ酸カルシウムのADI(一日摂取許容量)を特定していない。日本においては、食品添加物として二酸化ケイ素(シリカ)またはケイ酸カルシウムを添加する場合、食品に対して合計で2%以下とされている。また、母乳代用品及び離乳食への使用は禁止されている [23]。
ヒトの推定摂取量を次に示す。[19]
以下はイギリスでの食品中のケイ素の量を計測したデータ。ケイ素を比較的多く含む食品を抜粋した。
食品 | 1食分 (g) | ケイ素含量 (mg/1食分) | ケイ素含量 (mg/100 g) |
---|---|---|---|
グラノーラ (シリアル) | 60 | 7.35 | 12.25 |
ミューズリー (スイススタイル) | 50 | 2.80 | 5.59 |
オートブラン | 14 | 3.27 | 23.36 |
スパゲティ (茹で) | 220 | 1.45 | 0.66 |
コメ(玄米) (茹で) | 120 | 4.51 | 3.76 |
コメ(短粒種) (茹で) | 120 | 1.18 | 0.98 |
小麦ふすま | 14 | 1.54 | 10.98 |
バナナ (生) | 100 | 4.77 | 4.77 |
マンゴー (生) | 150 | 3.0-4.7 | 2.0-3.15 |
パイナップル (生) | 80 | 3.14 | 3.93 |
豆腐 | 60 | 1.78 | 2.96 |
サヤインゲン (茹で) | 90 | 7.86 | 8.73 |
ホウレンソウ (茹で) | 80 | 4.10 | 5.12 |
水道水 | 200 | 0.50 | 0.25 |
ラガービール (缶) | 333 | 5.46 | 1.64 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.