YWHAZまたは14-3-3ζ/δは、ヒトでは8番染色体(英語版)に位置するYWHAZ遺伝子にコードされるタンパク質である[5][6]。このタンパク質は14-3-3タンパク質ファミリーのメンバーであり、多くのシグナル伝達経路において中心的なハブタンパク質として機能する[6][7]。14-3-3ζは細胞生存に重要なアポトーシス経路の主要な調節因子であり、多くのがんや神経変性疾患で重要な役割を果たしている[7][8][9][10][11]。
概要 PDBに登録されている構造, PDB ...
YWHAZ |
---|
|
PDBに登録されている構造 |
---|
PDB | オルソログ検索: RCSB PDBe PDBj |
---|
PDBのIDコード一覧 |
---|
1IB1, 1QJA, 1QJB, 2C1J, 2C1N, 2O02, 2WH0, 3CU8, 3NKX, 3RDH, 4BG6, 4FJ3, 4HKC, 4IHL, 4N7G, 4N7Y, 4N84, 4WRQ, 4ZDR, 1A38, 1A4O, 1A37, 5D2D, 5D3F, 5EXA, 5EWZ |
|
|
識別子 |
---|
記号 | YWHAZ, 14-3-3-zeta, HEL-S-3, HEL4, KCIP-1, YWHAD, HEL-S-93, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta, POPCHAS |
---|
外部ID | OMIM: 601288 MGI: 109484 HomoloGene: 56528 GeneCards: YWHAZ |
---|
|
|
|
|
オルソログ |
---|
種 | ヒト | マウス |
---|
Entrez | | |
---|
Ensembl | | |
---|
UniProt | | |
---|
RefSeq (mRNA) | | |
---|
RefSeq (タンパク質) | | |
---|
場所 (UCSC) | Chr 8: 100.92 – 100.95 Mb | Chr 8: 36.77 – 36.8 Mb |
---|
PubMed検索 | [3] | [4] |
---|
ウィキデータ |
|
閉じる
14-3-3タンパク質は一般的に約30 kDaで、ホモ二量体またはヘテロ二量体を形成する[12][13]。各単量体は9本の逆平行αヘリックスから構成される。4本のαヘリックス(αC、αE、αG、αI)は両親媒性の溝を形成し、リガンド結合部位として機能する。この溝は、RXX(pS/pT)XP、RXXX(pS/pT)XP、(pS/pT)X1-2-COOHの3種類のコンセンサス結合モチーフを認識する(pS/pTはホスホセリンまたはホスホスレオニンを表す)。標的タンパク質はこの主相互作用部位に加えて、溝以外の部位で副次的な相互作用を行う場合もある。14-3-3ζは、Cby(英語版)と複合体を形成した際のお椀型をした二量体結晶構造が解かれている[13]。YWHAZ遺伝子は5' UTRが異なるいくつかの転写バリアントをコードするが、いずれも同じタンパク質が産生される[6]。
14-3-3ζは14-3-3タンパク質ファミリーの7種類のメンバーのうちの1つである。このファミリーは普遍的に発現し、植物と哺乳類の間で高度に保存されている[6][7][11][12]。このタンパク質ファミリーは主にホスホセリン/スレオニンを持つタンパク質の結合によってシグナル伝達経路を調節することが知られているが、リン酸化されていないタンパク質が結合する場合もある[6][7][8][11][14]。14-3-3タンパク質は、代謝、転写、アポトーシス、タンパク質輸送、細胞周期の調節など、広範囲の生物学的過程に関与している[8][9][11][12][15]。こうしたリン酸化依存性と広範囲の生物学的影響の組み合わせによって複数のシグナル伝達経路が動的に調節され、細胞の環境変化に対する適応が可能となっている[8]。
特に、14-3-3ζは細胞生存の調節に重要な因子であり、Rafキナーゼ、BAX、BAD、NOXA(英語版)、カスパーゼ-2など多くのアポトーシスタンパク質と相互作用する[8][9]。14-3-3ζはBADやBAXに結合して細胞質に隔離し、アポトーシス促進性のBcl-2やBcl-xLの活性化を効果的に防ぐことでアポトーシスを負に調節する。さらに、NOXAによる抗アポトーシスタンパク質MCL1(英語版)の阻害も防ぐ[9]。その結果、14-3-3ζは化学療法による細胞死や、アノイキス(英語版)、成長因子の枯渇、低酸素といった環境ストレスから細胞を保護する機能を果たすこととなる。その動的な活性の一例として、14-3-3ζは低酸素条件下ではATG9A(英語版)に結合してオートファジーを活性化するのに対し、高血糖条件下ではVps34(英語版)に結合することでオートファジーを阻害する[8]。さらに、14-3-3ζはIRS1との相互作用を介して、インスリンレベルに応答したグルコーストランスポーターのトラフィッキングを調節している可能性がある[6][8]。
14-3-3ζはさまざまなリガンドや過程を介して細胞周期の進行を調節する。例えば、14-3-3ζはBIS(英語版)と複合体を形成し、STAT3のフォールディングのシャペロンとして機能することでシグナル伝達経路を活性化し、細胞老化を制御する[16]。また14-3-3ζは、サイクリン依存性キナーゼに結合して細胞質に隔離することでそれらの活性を阻害し、G2/M期のチェックポイントを負に調節する[17]。14-3-3ζは主に細胞質に存在して多くの核タンパク質を結合するため、標的タンパク質の核局在シグナルを遮断することで核内輸送を阻害している可能性が高い[12]。また細胞質と核の双方に局在することは遺伝子発現において何らかの役割をもつこと示唆しており、おそらくは転写因子の活性を調節している[9]。
シグナル伝達調節因子
14-3-3ζは細胞内でIL-17シグナルの伝達に関与している。IL17A(英語版)は炎症性サイトカインであり、自己免疫疾患や宿主防御に関与している。14-3-3ζの存在はIL17Aシグナルの出力に偏りを生み出し、IL-6の産生を促進する一方でCXCL1を抑制する[22]。
14-3-3ζは主要なハブタンパク質として、さまざまな疾患に関与している。一例として、14-3-3ζは細胞増殖に中心的役割を果たしており、そのため腫瘍のプログレッションにも関与している[7][10]。14-3-3ζはmTOR、Akt、グルコーストランスポーターのトラフィッキングなどの過程を介して、肺がん、乳がん、リンパ腫、頭頸部がんなど多くのがんへの関与していることが示唆されている。特に、14-3-3ζは化学療法抵抗性と関係しており、そのためがん治療の標的として有望である[8][9][10]。これまでのところ、14-3-3ζは乳がん、肺がん、頭頸部がん、そしておそらく消化器がんにおいて予後のマーカーとなる可能性がある[7]。一方で、肝細胞がんでは統計的に有意な関係は見出されていない[17]。
がんに加えて、14-3-3ζは病原体の感染や、クロイツフェルト・ヤコブ病、パーキンソン病、アルツハイマー病などの神経変性疾患への関与も示唆されている[11]。14-3-3ζはタウタンパク質との相互作用を介してアルツハイマー病に関与することが観察されており、14-3-3ζの発現は疾患の重症度と相関している[14]。
ヒトの自然免疫分子であるサーファクタントプロテインA(SP-A、2つの遺伝子SFTPA1(英語版)、SFTPA2(英語版)によってコードされる)は、14-3-3タンパク質ファミリーと結合するようである。さらに、14-3-3の阻害はサーファクタントプロテイン値の低さと相関しており、肺表面と14-3-3タンパク質との関係が示されている[23]。サーファクタントは肺と呼吸機能の維持に重要な要素である。サーファクタントの欠乏は新生児呼吸窮迫症候群(NRDS)と密接に関係しており、NRDSの症状を示す早産児ではサーファクタントの欠乏がみられる。これらのことは、14-3-3タンパク質が呼吸機能とNRDSに重要な役割を果たしている可能性を示している[24][25]。
さらに、14-3-3ζは実験動物における関節リウマチの症状の抑制に重要な役割を果たしていることが示されている。14-3-3ζノックアウト動物は野生型と比較して早発性で重度の炎症性関節炎がみられる。関節炎14-3-3ζノックアウト動物では、より重度の骨喪失と滑膜関節への免疫細胞の浸潤が観察される。14-3-3ζはコラーゲン合成と骨の保存の促進に活発な役割を果たしており、それによって骨リモデリング(英語版)に大きな影響を与えている。関節炎の誘導時には抗14-3-3ζ抗体の喪失がみられるが、関節炎ノックアウトマウスに対して抗体を注入することで関節炎を抑制することはできない。一方で、発症前段階での14-3-3ζに対する免疫化はノックアウトマウスと野生型の双方で関節炎を大きく抑制する。14-3-3ζはIL-1βをダウンレギュレーションする一方でIL-1Raをアップレギュレーションし、関節炎を抑制することが観察されている[26]。
YWHAZは次に挙げる因子と相互作用することが示されている。
“Assignment of the human genes encoding 14,3-3 Eta (YWHAH) to 22q12, 14-3-3 zeta (YWHAZ) to 2p25.1-p25.2, and 14-3-3 beta (YWHAB) to 20q13.1 by in situ hybridization”. Genomics 33 (1): 149–50. (April 1996). doi:10.1006/geno.1996.0176. PMID 8617504.
“Increased 14-3-3ζ expression in the multidrug-resistant leukemia cell line HL-60/VCR as compared to the parental line mediates cell growth and apoptosis in part through modification of gene expression”. Acta Haematologica 132 (2): 177–86. (2014). doi:10.1159/000357377. PMID 24603438.
“14-3-3ζ regulates nuclear trafficking of protein phosphatase 1α (PP1α) in HEK-293 cells”. Archives of Biochemistry and Biophysics 558: 28–35. (September 2014). doi:10.1016/j.abb.2014.06.012. PMID 24956593.
“Interaction of 14-3-3ζ with microtubule-associated protein tau within Alzheimer's disease neurofibrillary tangles”. Biochemistry 52 (37): 6445–55. (September 2013). doi:10.1021/bi400442d. PMID 23962087.
“Autoantibody against 14-3-3 zeta: a serological marker in detection of gastric cancer”. Journal of Cancer Research and Clinical Oncology 145 (5): 1253–1262. (May 2019). doi:10.1007/s00432-019-02884-5. PMID 30887154.
“Cell adhesion regulates the interaction between the docking protein p130(Cas) and the 14-3-3 proteins”. The Journal of Biological Chemistry 274 (9): 5762–8. (February 1999). doi:10.1074/jbc.274.9.5762. PMID 10026197.
“The proapoptotic protein Bad binds the amphipathic groove of 14-3-3zeta”. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1547 (2): 313–9. (June 2001). doi:10.1016/s0167-4838(01)00202-3. PMID 11410287.
“14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain”. The Journal of Biological Chemistry 272 (34): 20990–3. (August 1997). doi:10.1074/jbc.272.34.20990. PMID 9261098.
“Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo”. The Journal of Biological Chemistry 275 (38): 29772–8. (September 2000). doi:10.1074/jbc.M001207200. PMID 10887173.
“Human signaling protein 14-3-3zeta interacts with platelet glycoprotein Ib subunits Ibalpha and Ibbeta”. Blood 91 (4): 1295–303. (February 1998). doi:10.1182/blood.V91.4.1295. PMID 9454760.
“Identification of a binding sequence for the 14-3-3 protein within the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Ib alpha”. The Journal of Biological Chemistry 271 (13): 7362–7. (March 1996). doi:10.1074/jbc.271.13.7362. PMID 8631758.
“Association of a phospholipase A2 (14-3-3 protein) with the platelet glycoprotein Ib-IX complex”. The Journal of Biological Chemistry 269 (28): 18287–90. (July 1994). doi:10.1016/S0021-9258(17)32301-3. PMID 8034572.
“ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins”. Nature Genetics 19 (2): 175–8. (June 1998). doi:10.1038/542. PMID 9620776.
“Selective association of protein kinase C with 14-3-3 zeta in neuronally differentiated PC12 Cells. Stimulatory and inhibitory effect of 14-3-3 zeta in vivo”. The Journal of Biological Chemistry 277 (26): 23116–22. (June 2002). doi:10.1074/jbc.M201478200. PMID 11950841.
“Centaurin-alpha(1) associates with and is phosphorylated by isoforms of protein kinase C”. Biochemical and Biophysical Research Communications 307 (3): 459–65. (August 2003). doi:10.1016/S0006-291X(03)01187-2. PMID 12893243.
“A20 inhibits NF-kappaB activation independently of binding to 14-3-3 proteins”. Biochemical and Biophysical Research Communications 238 (2): 590–4. (September 1997). doi:10.1006/bbrc.1997.7343. PMID 9299557.
“14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules”. The Journal of Biological Chemistry 271 (33): 20029–34. (August 1996). doi:10.1074/jbc.271.33.20029. PMID 8702721.
“Identification and characterization of the interaction between tuberin and 14-3-3zeta”. The Journal of Biological Chemistry 277 (42): 39417–24. (October 2002). doi:10.1074/jbc.M204802200. PMID 12176984.