Loading AI tools
ウィキペディアから
抽象代数学において、アルティン・ウェダーバーンの定理 (英: Artin–Wedderburn theorem) は半単純環や半単純代数の分類定理である。
定理は、(アルティン)[注釈 1]半単純環 R はある有限個の ni 次行列環 Mni(Di) の直積に同型であると述べている[1]。ここで ni は正の整数、 Di は可除環であり、 両者とも添字 i の置換を除いて一意的に決定される。とくに、任意の単純左または右アルティン環は可除環 D 上の n 次行列環に同型で、n と D は両方とも一意的に決まる[2]。
直接の系として、アルティン・ウェダーバーンの定理は可除環上有限次元であるすべての単純環(単純代数)は行列環と同型であることを意味する。これはもともと J. H. M. Wedderburn (1908) の結果である。E. Artin (1927) は後にそれをアルティン環のケースに一般化した[注釈 2]。
R が可除環 E 上の有限次元単純代数であれば、D は E に含まれる必要はないことに注意せよ。例えば、複素数体上の行列環は実数体上の有限次元単純代数である。
アルティン・ウェダーバーンの定理は可除環上の単純環の分類を与えられた可除環を含む可除環の分類に帰着する。これをさらに単純化できる。D の中心は 体 K でなければならない。したがって R は K-代数であり、それ自身は K を中心としてもつ。有限次元単純代数 R はしたがって K 上の中心的単純代数である。それゆえアルティン・ウェダーバーンの定理は有限次元中心的単純代数の分類の問題を与えられた中心をもつ可除環の分類の問題に帰着する。
R を実数体とし、C を複素数体とし、H を四元数体とする。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.