Loading AI tools
ウィキペディアから
数学の特に環論において、体 K 上の中心的単純多元環(ちゅうしんてきたんじゅんかん、英: central simple algebra; CSA)とは、与えられた K 上の階数(ベクトル空間としての次元)が有限な結合多元環 A であって、環として単純で、その中心がちょうど K となっているようなものをいう。明らかに、任意の単純多元環は、その中心上の中心的単純環である。
例えば、複素数体 C はそれ自身の上の中心的単純環だが、(C の中心は C であって R ではないから)実数体 R 上の中心的単純環ではない。四元数体 H は R 上 4-次元の中心的単純環をなし、後述するように R のブラウアー群 Br(R) の非自明な元によって表される。
同じ体 F 上の二つの中心的単純環 A ≅ Mn(S) と B ≅ Mm(T) とが互いに相似(あるいはブラウアー同値)であるとは、それらに属する斜体 S と T とが同型となることをいう。与えられた体 F 上の中心的単純環の、この同値関係に関する同値類は多元環類と呼ばれ,これらが成す集合には、多元環のテンソル積によって群演算を与えることができる。このようにして得られた群は、体 F のブラウアー群 Br(F) と呼ばれる[1]。ブラウアー群は常にねじれ群である[2]。
体 E が K 上の中心的単純環 A の分解体 (splitting field) であるとは、テンソル積 A ⊗K E が E 上の行列環と同型となるときに言う。任意の有限次元中心的単純環は分解体を持つ。実際、A が多元体の場合は A の極大可換部分体がその分解体になる。一般に、K の分離拡大となるような分解体が存在して、その次数は A のシューア指数に等しい[9]。例えば複素数体 C は R 上の四元数環 H を
なる同型対応によって分解する。この分解体の存在により、中心的単純環 A に対して被約ノルム (reduced norm) および被約トレース (reduced trace) を定義することができる[10]。A を分解体上の行列環へ写して、その行列環上での行列式およびトレースを考えたもの(行列環上のそれと行列環への同型との合成)がそれぞれ被約ノルムおよび被約トレースである。例えば、四元数環 H を上記のように分解したとき、その元 t + xi + yj + zk は被約ノルム t2 + x2 + y2 + z2 および被約トレース 2t を持つ。
被約ノルムは乗法的で、被約トレースは加法的である。中心的単純環 A の元 a が可逆となる必要十分条件は、その被約ノルムの値が非零となることである。従って、中心的単純環が多元体となるための必要十分条件は、その非零元の被約ノルムがすべて非零となることである[11]。
体 K 上の中心的単純環の概念は、体 K 上の拡大体の概念の、非可換な拡大となる場合に対応するものになっている。体も中心的単純環も非自明な両側イデアルを持たないことは共通しているが、中心的単純環は体と違って中心を持ち、かつ零元以外の各元が必ずしも逆元を持つとは限らない(多元体となる必要はない)。中心的単純環は、特に代数体(有理数体 Q の有限次拡大)を一般化するものとして、非可換数論において興味の対象となる。非可換代数体の項を見よ。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.