A valószínűségi mező a valószínűségszámítás egyik legfontosabb fogalma. Olyan folyamatokat (vagy „kísérleteket”) modellez, amelyeknek köze van a véletlenhez.
A rövid definíció szerint a valószínűségi mező egy olyan mértéktér, ahol a teljes tér mértéke 1. Bővebben:
minden páronként diszjunkt halmazokból álló halmazsorozat esetén ,
akkor az hármast valószínűségi mezőnek nevezzük.
Ez a definíció azt is jelenti, hogy a valószínűség fogalma tisztán axiomatikus felírással is kezelhető, és nemcsak empirikusan – ahogy azt von Mises leírta. Alapvető az a gondolat, hogy a véletlen kísérlet összes kimenetét egymást kizáró eseményekként adjuk meg. Például egy szerencsekerék csak egy pozícióban állhat meg, ami egy adott null pozícióhoz képest mérhető. A mellékelt kép által mutatott példában csak az 1, 2, 3 számokhoz tartozó tartományokban állhat meg; egy mechanizmus akadályozza meg, hogy pont két szám határára essen (aminek egyébként is nulla a valószínűsége). Emiatt nem következhet be két elemi esemény, ezek diszjunktak. Ez alapozza meg az összeadási tétel kiterjesztését: Véges sok, egymást kölcsönösen kizáró esemény együttes valószínűsége az egyes események valószínűségeinek összege.
Az elemeket kimeneteleknek, vagy néha pongyolán elemi eseményeknek nevezzük; bár elemi eseménynek inkább az ezeket egyetlen elemként tartalmazó halmazokat célszerű nevezni, hiszen a mértékfüggvény halmazokon értelmezett, lásd alább.
Az hármast valószínűségi mezőnek vagy valószínűségi térnek nevezzük.
Példák diszkrét valószínűségi mezőre
Általánosabban, diszkrét valószínűségi mezőről van szó, ha az eseménytér véges vagy megszámlálhatóan végtelen, és eseményalgebrája a hatványhalmaz, vagyis . Ebben az esetben nincsen szükség a σ-algebra fogalmának bevezetésére, diszkrét valószínűségi mezőről beszélhetünk.[1]
Klasszikus valószínűségi mező
Legyen véges halmaz, és minden halmaz esetén . Ekkor az valószínűségi mezőt klasszikus valószínűségi mezőnek nevezzük.
Akkor is beszélnek diszkrét valószínűségi mezőről, ha az eseménytér tetszőleges, de a valószínűségek mindig egy véges vagy megszámlálhatóan végtelen halmaz elemeit veszik fel, azaz ennek a halmaznak 1 a valószínűsége.[2]
Bernoulli-mező
Ha az alaphalmaz, a valószínűségek pedig , akkor Bernoulli-mezőről van szó.[3]
Poisson-eloszlásból származtatott
A természetes számok halmaza, mint eseménytér, azaz , minden természetes szám lehetséges kimenetel.
Az események ennek véges vagy megszámlálható végtelen részhalmazai.
Valószínűségi mérték lehet a Poisson-eloszlás. A szám valószínűsége , ahol pozitív paraméter.
Ezzel diszkrét valószínűségi tér.
Példák nem diszkrét valószínűségi mezőre
Geometriai valószínűségi mező
Legyen olyan Lebesgue mérhető halmaz, amelynek Lebesgue-mértéke véges, az halmaz Lebesgue mérhető részhalmazainak -algebrája és minden esemény esetén . Ekkor az valószínűségi mezőt geometriai valószínűségi mezőnek nevezzük.
Exponenciális eloszlásból származtatott
Az eseménytér a nemnegatív számok halmaza.
Az események az Borel-részhalmazai, azaz . Ezzel minden nyílt, zárt, félig nyílt intervallum, ezek egyesítése, metszete és komplementere esemény.
Ulrich Krengel. Einführung in die Wahrscheinlichkeitstheorie und Statistik. Für Studium, Berufspraxis und Lehramt, 8.,Wiesbaden:Vieweg(2005). ISBN 3-8348-0063-5
Hans-Otto Georgii. Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik, 4.,Berlin:Walter de Gruyter(2009). ISBN 978-3-11-021526-7
Norbert Henze. Stochastik für Einsteiger., 10.,Wiesbaden:Springer Spektrum(2013, isbn=978-3-658-03076-6,)
Achim Klenke. Wahrscheinlichkeitstheorie, 3.,Berlin Heidelberg:Springer-Verlag(2013). ISBN 978-3-642-36017-6
Klaus D. Schmidt. Maß und Wahrscheinlichkeit, 2., átnézett,Heidelberg Dordrecht London New York:Springer-Verlag(2011). ISBN 978-3-642-21025-9
Ez a szócikk részben vagy egészben a Wahrscheinlichkeitsraum című német Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.