From Wikipedia, the free encyclopedia
Az entalpia az állandó nyomáson lejátszódó folyamatok jellemzésére bevezetett – energia dimenziójú – termodinamikai állapotfüggvény (jele H, mértékegysége J),[1] melynek értéke a rendszer belső energiája plusz a rendszer nyomásának és térfogatának szorzata.[2] A tapasztalat szerint egy rendszer energiatartalma hőtranszferrel, valamint munkavégzéssel növelhető vagy csökkenthető (a termodinamika I. főtétele). Mind a fizikai változások, mind pedig a kémiai reakciók során lehetséges a térfogati munka. Az elemi térfogati munka állandó p nyomás esetén:
Ez a térfogati munka jelentős nagyságú, ha egy reakcióban gáz képződik, vagy ha például gáz halmazállapotú rendszerrel közlünk hőt, és elhanyagolhatóan kicsi például a szilárd testek melegítése közben fellépő hőtáguláskor.
A termodinamikai rendszer entalpiáját az alábbi képlettel lehet definiálni:
ahol
Végtelen kis változásokra vonatkozóan:
Ha a folyamat állandó nyomáson megy végbe, akkor:
Mivel az entalpia állapotfüggvény, változói pedig az entrópia, a nyomás és az anyagmennyiség, ezért H(S,p,n) és
A teljes differenciálból azonosítható a hőmérsékletnek, a térfogatnak és a kémiai potenciálnak megfelelő parciális derivált, így az egyenlet az alábbiak szerint egyszerűsödik:
Ha egy rendszerrel olyan feltételek között közlünk hőt, hogy a nyomás közben állandó maradjon, akkor ennek a hőnek egy része a rendszer belső energiájának növelésére, a másik része térfogati munka végzésére fordítódik, azaz a rendszer entalpiáját növeli. Gyakorlatban ezt úgy érzékeljük, hogy a rendszer hőmérséklete megnő (ha nincs közben valamilyen izoterm fázisátalakulás). Annak a mértéke, hogy mekkora lesz a hőmérsékletnövekedés, a rendszer hőkapacitásától függ.
Az állandó nyomáson mért hőkapacitás definíció összefüggéséből kiindulva,
melynek moláris formája
ha
azaz a kis h moláris entalpiát jelöl.
A rendszer T hőmérsékletre vonatkozó entalpiája a változók szétválasztása után hőmérséklet szerinti integrálással számítható ki.
Mint a mellékelt ábra mutatja, T2 és T1 hőmérsékleten a rendszer entalpiájának a különbsége a Cp függvény adott szakasza alatti terület nagyságával arányos.
Ha T1-nek a 0 K hőmérsékletet választjuk, akkor a Ho – az integrálási állandó – az ún. nullpont-entalpiát jelenti (ami a kvantumelmélet szerint a tapasztalattal megegyezően nem nulla, de nem ismeretes):
A gyakorlati számítások céljára To-ként nem az abszolút nulla fokot, hanem az ún. standard hőmérsékletet a 25,0 °C-ot, vagyis a 298,15 K-t választották:
Az entalpia abszolút értékének a nem ismerete a gyakorlati életben nem okoz problémát, mert nem a tényleges érték, hanem egy-egy folyamatban az entalpia megváltozásának a nagysága a fontos jellemző. Például ha a földgáz elég, akkor az a fontos adat, hogy mekkora az entalpia különbsége az égési folyamat végén az égési folyamat előtti állapothoz képest. Az energiamegmaradás törvénye értelmében ennyi lehet a maximális energia, ami az égés során felszabadulhat, függetlenül attól, hogy kiinduláskor mekkora volt az entalpia tényleges értéke.
Az entalpia abszolút értéke nem ismerhető meg, és gyakorlati értéke sem lenne, de a számítások egységesítése céljából célszerűnek látszott a standard állapot és a standard entalpia definiálása.
Standard hőmérsékletként a 25,0 °C-ot, vagyis a 298,15 K-t, standard nyomásként pedig a 105 Pa-t azaz 1 bar-t választották. A definíció szerint standard körülmények között minden referencia állapotú kémiai elem standard entalpiája (standard képződési entalpiája) nulla:
A referenciaállapot a standard nyomáson és hőmérsékleten az adott elem legstabilabb állapotú, legalacsonyabb szabad entalpiájú módosulata (pl. a szénnek több módosulata is stabil standard körülmények között, és csak a grafit módosulat standard képződési entalpiája nulla, a gyémánté nem).
Az energiamegmaradás törvénye és a Hess-törvény figyelembe vételével vegyületek standard képződési entalpiája pedig a képződési reakcióegyenlet ismeretében számítható ki, más hőmérsékletre pedig a hőkapacitás hőmérsékletfüggvényének integrálásával számítható – feltételezve, hogy az anyag összenyomhatatlan:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.