From Wikipedia, the free encyclopedia
Unha extinción en masa, evento de extinción ou crise biótica é un amplo e rápido decrecemento de biodiversidade na Terra. Dito evento identifícase por un abrupto cambio na diversidade e abundancia dos organismos multicelulares. Ocorre cando a taxa de extinción se incrementa con respecto á taxa de especiación. Como a maioría da diversidade e da biomasa da Terra é microbiana, e, por tanto, difícil de medir, os eventos de extinción rexistrados afectan os compoñentes complexos e doados de observar da biosfera en vez de á total diversidade e abundancia da vida.[2]
A extinción ocorre a unha velocidade desigual. Baseándose no rexistro fósil, a taxa de extinción de fondo na Terra é de aproximadamente dúas a cinco familias taxonómicas de animais mariños a cada millón de anos. Os fósiles mariños son os que se utilizan principalmente para medir as taxas de extinción debido ao seu superior rexistro fósil e rango estratigráfico comparados cos animais terrestres.
O evento da grande oxixenación foi probablemente o primeiro grande episodio de extinción. Desde a explosión cámbrica houbo cinco grandes extincións en masa máis que excederon significativamente a taxa de extinción de fondo. A máis recente e mellor coñecida, a extinción do Cretáceo-Paleoxeno, que ocorreu aproximadamente hai 66 millóns de anos, foi unha extinción en masa a grande escala de especies de animais e plantas nun curto período de tempo xeolóxico.[3] Ademais das cinco maiores extincións en masa, hai tamén numerosas outras menores, e a extinción en masa que puxeron en marcha as actividades humanas chámase ás veces a sexta extinción.[4][5][6][7] As extincións en masa parecen ser un fenómeno principalmente do Fanerozoico, con taxas de extinción baixas antes de que aparecesen os organismos complexos grandes.[8]
As estimacións da cantidade de extincións en masa grandes nos últimos 540 millóns de anos van desde só cinco a máis de vinte. Estas diferenzas débense ao limiar elixido para describir un evento de extinción como "grande" e a data elixida para medir a diversidade anterior.
Nun famoso traballo publicado en 1982, Jack Sepkoski e David M. Raup identificaron cinco extincións en masa. Foron identificadas orixinalmente como casos atípicos nunha tendencia xeral de diminución das taxas de extinción durante o Fanerozoico,[9] pero ao aplicárense probas estatísticas máis estritas aos datos acumulados, estableceuse que a vida animal multicelular sufriu cinco extincións en masa grandes e moitas pequenas.[10] Estes eventos, chamados os "cinco grandes", non poden ser claramente definidos, senón que máis ben parecen representar os maiores (ou algúns dos maiores) dun continuo relativamente suave de eventos de extinción.[9]
Malia a popularización destes cinco eventos, non hai unha fina liña de separación entre eles e outros eventos de extinción; usando diferentes métodos de calcular o impacto na extinción podería ser que outros eventos entrasen na lista dos cinco maiores.[20]
Un dos principais problemas é que canto máis antigo é o rexistro fósil, máis difícil é lelo. Isto débese a que:
Suxeriuse que as variacións aparentes na biodiversidade mariña poden realmene ser un artefacto, e as estimacións da abundancia están directamente relacionadas coa cantidade de rochas dispoñibles para tomar mostras de diferentes períodos de tempo.[22] Porén, as análises estatísticas e outras evidencias proporcionan datos que aseguran que os eventos de extinción amplamente aceptados son reais. Unha cuantificación da exposición das rochas de Europa Occidental indica que moitos dos eventos menores para os cales se buscou unha explicación biolóxica son máis facilmente explicados por un nesgo de mostraxe.[23]
As investigacións completadas despois destes traballos pioneiros de 1982 concluíron que está en marcha un sexto evento de extinción:
Lista de episodios de extinción:[28]
Período | Extinción | Data | Causas posibles |
---|---|---|---|
Cuaternario | Extinción do Holoceno | c. 10 000 a.C. — continúa hoxe | impacto humano |
Evento de extinción do Cuaternario | hai 640 000, 74 000 e 13 000 anos | Descoñecido, pode ser por cambios climáticos e exceso de caza humana | |
Neoxeno | Extinción do límite Plioceno-Plistoceno | 2 Ma | Supernova?[29][30] impacto de Eltanin?[31][32] |
Alteración do Mioceno medio | 14,5 Ma | ||
Paleoxeno | Evento de extinción do Eoceno-Oligoceno | 33,9 Ma | impactador de Popigai?[33] |
Cretáceo | Evento de extinción do Cretáceo-Paleoxeno | 66 Ma | Impactador de Chicxulub;[34] Trapps do Deccán? |
Evento do límite Cenomaniano-Turoniano | 94 Ma | gran provincia ígnea do Caribe[35] | |
Extinción aptiana | 117 Ma | ||
Xurásico | Extinción de finais do Xurásico (Titoniano) | 145 Ma | |
Recambio do Toarciano | 183 Ma | Provincias de Karoo-Ferrar[36] | |
Triásico | Evento de extinción Triásico-Xurásico | 201 Ma | Provincia magmática do Atlántico central;[37] impactador |
Evento pluvial do Carniano | 230 Ma | Fluxos basálticos de Wrangellia[38] | |
Permiano | Evento de extinción do Permiano-Triásico | 252 Ma | Trapps siberianos;[39] cráter da Terra de Wilkes[40] |
Evento de extinción do final do Capitaniano | 260 Ma | Trapps de Emeishan?[41] | |
Extinción de Olson | 270 Ma | ||
Carbonífero | Colapso dosbosques do Carbonífero | 305 Ma | |
Devoniano | Extinción do Devoniano tardío | 375–360 Ma | Trapps de Viluy[42] |
Silúrico | Evento Lau | 420 Ma | Cambios no nivel do mar e na súa química?[43] |
Evento Mulde | 424 Ma | Descenso global do nivel do mar?[44] | |
Evento Ireviken | 428 Ma | Anoxia do océano profundo; ciclos de Milankovitch?[45] | |
Ordovícico | Eventos de extinción do Ordovícico-Silúrico | 450–440 Ma | Arrefriamento global e descenso do nivel do mar; explosión de raios gamma?[46] |
Cámbrico | Evento de extinción do Cámbrico–Ordovícico | 488 Ma | |
Evento de extinción do Dresbachiano | 502 Ma | ||
Evento de extinción de finais do Botomiano | 517 Ma | ||
Precámbrico | Extinción de finais do Ediacarano | 542 Ma | |
Evento da grande oxixenación | 2400 Ma | Aumento dos niveis de oxíxeno na atmosfera debido ao desenvolvemento da fotosíntese |
As extincións en masa ás veces aceleraron a evolución da vida na Terra. Cando o dominio de determinados nichos ecolóxicos pasa dun grupo de orgnismos a outro, raramente se debe a que o novo grupo dominante é "superior" ao vello, senón que normalmente se debe a que un acontecemento de extinción elimina o vello grupo dominante e deixa vía libre ao novo.[47][48]
Por exemplo, os mamaliformes ("con forma de mamíferos") e despois os mamíferos existiron durante todo o reinado dos dinosauros, pero non podían competir con eles polos nichos dos grandes vertebrados terrestres que os dinosauros monopolizaban. A extinción en masa de final do Cretáceo eliminou os dinosauros non avianos e fixo posible que os mamíferos se expandisen aos nichos dos grandes vertebrados terrestres. Ironicamente, os proios dinosauros foran os beneficiarios dunha extinción en masa anterior, a do final do Triásico, que eliminou os seus principais rivais, os crurotarsos.
Outro punto de vista que foi sinalado na hipótese da escalada predí que as especies que están en nichos ecolóxicos con máis conflito de organismo a organismo é menos probable que sobrevivan ás extincións. Isto débese a que os mesmos trazos que fan que unha especie sexa numerosa e viable en condicións bastante estables convértense nunha pesada carga cando os niveis de poboación caen nos organismos en competencia na dinámica dun evento de extinción.
Ademais, moitos grupos que sobreviven a unha extinción en masa non se recuperan en cantidade nin en diversidade, e moitos destes entran nun prolongado declive a longo prazo, no que a miúdo se denomina "Paseo dun clado cara á morte" (Dead Clade Walking).[49]
Darwin estaba firmemente convencido de que as interaccións bióticas, como a competición polo alimento e o espazo —a ‘loita pola existencia’— tiñan unha importancia considerablemente maior para promocionar a evolución e a extinción que os cambios no ambiente físico. Expresou isto en A orixe das especies: "As especies son producidas e exterminadas por causas que actúan lentamente… e a máis importante de todas as causas do cambio orgánico é unha que é case independente da alteración… das condicións físicas, concretamente a relación mutua de organismo a organismo- a mellora dun organismo implica a mellora ou exterminio doutros".[50]
Fixéronse suxestións diversas sobre a periodicidade dos episodios de extinción masiva, como estimar que ocorren unha vez cada 26 a 30 millóns de anos,[51][52] ou que a diversidade flutúa episodicamente cada ~62 millóns de anos.[53] Este suposto padrón intentouse explicar de varias maneiras, como pola presenza dunha hipotética estrela compañeira do Sol,[54][55] oscilacións no plano galáctico, ou o paso do sistema solar polos brazos espirais da Vía Láctea.[56] Porén, outros autores chegaron á conclusión de que a data das extincións masivas mariñas non concorda coa idea de que as extincións en masa son periódicas ou que os ecosistemas crecen gradualmente ata un punto en que unha extinción en masa é inevitable.[9] Moitas das correlacións propostas que se argumentaron non resistiron o seu exame.[57][58] Outros argumentaron que hai fortes probas que apoian a periodicidade en diversos rexistros,[59] e evidencias adicionais nas variacións periódicas en variables xeoquímicas non biolóxicas.[60]
As extincións en masa pénsase que son o resultado final cando un estrés que leva actuando a longo prazo é agravado por un shock catastrófico breve.[61] No decurso do Fanerozoico, parece ser cada vez menos probable que un determinado taxon se extinga nun momento dado,[62] o cal pode reflectir que se crearon redes tróficas máis robustas, as especies eran menos susceptibles a extinguirse e outros factores como a distribución continental debido ao movemento das placas tectónicas.[62] Porén, incluso tendo en conta un posible nesgo nas mostras dispoñibles, parece haber un decrecemento gradual das taxas de extinción e de aparición de taxons durante o Fanerozoico.[9] Isto pode representar o feito de que os grupos con altas taxas de recambio é máis probable que se extingan por casualidade; ou pode ser un artefacto da taxonomía: as familias tenden a ter máis especies co tempo, o que as fai menos proclives á extinción;[9] e os grupos taxonómicos máis grandes (por definición) aparecen antes no tempo xeolóxico.[63]
Tamén se sinalou que os océanos se fixeron cada vez máis acolledores para a vida nos últimos 500 millóns de anos, e así eran menos vulnerables ás extincións en masa,[64][65][66] pero a susceptibilidade á extinción a nivel taxonómico non parece facer que as extincións en masa sexan nin máis nin menos probables.[62]
Aínda se discuten as causas de todas estas extincións en masa. En xeral, as grandes extincións poden ser o resultado final cando a biosfera está baixo un estrés que actúa a longo prazo e sofre un shock de breve duración.[61] Parece que está actuando un mecanismo subxacente na correlación das taxas de extinción e formación da diversidade. Unha alta diversidade conduce a un incremento persistente nas taxas de extinción; unha baixa diversidade a un incremento persistente na taxa de formación de taxons. Estas relacións controladas presumiblemente pola ecoloxía amplifican seguramente perturbacións máis pequenas (impactos de asteroides etc.) para producir os efectos globais observados.[9]
Unha boa teoría para explicar unha extinción en masa debería: (i) explicar todas as perdas de seres vivos observadas, non só centrarse nuns poucos grupos (como os dinosauros); (ii) explicar por que desapareceron grupos determinados de organismos e outros sobreviviron; (iii) proporcionar mecanismos que sexan o suficientemente potentes para causar unha extinción en masa pero non unha extinción total; (iv) estar baseada en sucesos ou procesos que pode demostrarse que realmente ocorreron, non abonda só con inferilos da extinción.
Pode ser necesario considerar combinacións de causas. Por exemplo, a extinción nos océanos do final do Cretáceo parece que foi causada por varios procesos que se solapan parcialmente no tempo e poden ter diferentes niveis de importancia en diferentes partes do mundo.[67]
Arens e West (2006) propuxeron un modelo de "presión / pulso" no cal as extincións en masas requiren xeralmente dous tipos de causas: presión a longo prazo sobre o ecosistema ("presión") e unha catástrofe súbita ("pulso") cara ao final do período de presión.[68] As súas análises estatísticas das taxas de extinción mariña ao longo do Fanerozoico suxeriron que nin unha presión a longo prazo por si soa nin unha catástrofe por si soa son suficientes para causar un incremento significativo na taxa de extinción.
Macleod (2001)[69] resumiu as relacións entre as extincións en masa e os eventos que son citadas máis frecuentemente como causas de extincións en masas, usando datos de Courtillot et al. (1996),[70] Hallam (1992)[71] e Grieve et al. (1996),[72] que son:
As causas que se teñen proposto máis comunmente para as extincións en masa son as seguintes:
A formación de provincias ígneas grandes por eventos de erupcións de fluxos basálticos puideron:
Os eventos de fluxos basálticos prodúcense como pulsos de actividade separados por períodos de calma. Como resultado, probablemente causan oscilacións do clima entre o arrefriamento e o quecemento, pero cunha tendencia global cara ao quecemento, xa que o dióxido de carbono que emiten pode permanecer na atmosfera durante centos de anos.
Especúlase que o volcanismo masivo causou ou contribuíu ás extincións do final do Permiano, do final do Triásico e do final do Cretáceo.[77] Unha correlación entre eventos volcánicos xigantescos que orixinaron grandes provincias ígneas e extincións en masa observouse durante os últimos 260 Ma.[78][79] Recentemente esa posible correlación estendeuse a todo o eón Fanerozoico.[80]
Estas baixadas están a miúdo claramente marcadas por secuencias observadas en todo o mundo de sedimentos contemporáneos que mostran toda ou parte dunha transición desde un leito mariño a unha zona mareal, unha praia e terra seca, e onde non hai estas probas obsérvase que as rochas nas áreas relevantes foron elevadas por procesos xeolóxicos como as oroxenias. O descenso do nivel do mar puido reducir a área ocupada pola plataforma continental (que é a parte máis produtiva do océano) suficientemente como para causar unha extinción en masa mariña, e podería alterar os padróns do clima dabondo para causar extincións na terra. Pero os descensos do nivel do mar son moi probablemente o resultado doutros eventos, como un duradeiro arrefriamento global ou o afundimento de dorsais mesooceánicas.
As baixadas do nivel do mar están asociadas coa maioría das extincións masivas, incluíndo todas as "cinco grandes": as dos finais do Ordovícico, do Devoniano, do Permiano, do Triásico e do Cretáceo.
Un estudo publicado en Nature en 2008 establecía unha relación entre a velocidade dos eventos de extinción en masa e os cambios no nivel do mar e sedimentos.[81] O estudo suxire que cambios nos ambientes oceánicos relacionados co nivel do mar exercen unha influencia que impulsa as taxas de extinción e xeralmente determina a composición da vida nos océanos.[82]
O impacto dun asteroide ou cometa o suficientemente grande pode causar o colapso nas cadeas tróficas tanto en terra coma no mar ao producir po e aerosoles particulados que imposibilitan a fotosíntese.[83] Os impactos en rochas ricas en xofre puideron ter emitido óxidos de xofre que precipitarían despois como chuvia ácida velenosa, que contribúe tamén ao colapso das cadeas tróficas. Tales impactos poden causar tamén megatsunamis e incendios forestais globais.
A maioría dos paleontólogos concordan agora que un asteroide chocou coa Terra hai 66 Ma, pero segue discutíndose se o impacto foi a única causa da extinción do Cretáceo-Paleoxeno.[84][85]
Un arrefriamento global sostido no tempo pode matar moitas especies polares e temperadas e forzar a outras a migrar cara ao ecuador; reduce a área dispoñible para as especies tropicais; a miúdo fai que o clima da Terra se faga máis árido como media, principalmente ao bloquear gran parte da auga do planeta no xeo e neve que se forma. Os ciclos de glaciación da recente idade do xeo crese que tiveron só un impacto suave sobre a biodiversidade, polo que a simple existencia dun arrefriamento significativo non é suficiente por si mesmo para explicar unha extinción en masa.
Suxeriuse que o arrefriamento global causou ou contribuíu ás extincións do Ordovícico-Silúrico, Permiano-Triásico, final do Devoniano e posiblemente outras. O arrefriamento global sostido distínguese dos efectos temporais sobre o clima cauados por eventos de erupción de fluxos basaltos ou por impactos.
Ten efectos opostos: amplía a área dispoñible para as especies tropicais; mata as especies temperadas ou fórzaas a migrar cara ás zonas polares; posiblemente causa graves extincións das especies polares; a miúdo fai o clima da Terra máis húmido como media, principalmente ao derreter o xeo e a neve, o que incrementa o volume do ciclo da auga. Pode tamén causar eventos anóxicos nos océanos (véxase máis abaixo).
A idea de que o quecemento global é a causa das extincións en masa está apoiada por varios estudos recentes.[86]
O exemplo máis drástico de quecemento global sostido é o máximo térmico do Paleoceno-Eoceno, que está asociado cunha das extincións en masa pequenas. Tamén se propuxo que causou o evento de extinción do Triásico-Xurásico, durante o cal se extinguiron o 20% das familias. Ademais, suxeriuse que o evento de extinción do Permiano-Triásico foi causado polo quecemento global.[87][88][89]
Os clatratos son compostos nos cales a rede molecular dunha substancia forma unha gaiola arredor doutra substancia. Os clatratos de metano (nos cales as moléculas de auga son a gaiola) fórmanse nas plataformas continentais. Estes clatratos o máis probable é que se destrúan rapidamente e liberen o metano que conteñen se a temperatura aumenta rapidamente ou a presión a que están sometidos baixa rapidamente, por exemplo en resposta a un repentino quecemento global ou a unha rápida baixada do nivel do mar ou mesmo por causa de terremotos. O metano é un gas de efecto invernadoiro moito máis potente que o dióxido de carbono, polo que unha erupción de metano (o que se chama "fusil de clatratos") podería causar un rápido quecemento global ou facer que este se incremente máis se a propia erupción de metano foi causada por un quecemento global xa en marcha.
A sinatura máis probable que indica que se produciu no pasado unha erupción de metano é un rápido descenso da proporción de carbono-13 / carbono-12 nos sedimentos, xa que os clatratos de metano son baixos en carbono-13; pero este cambio tería que ser moi grande, xa que hai outros acontecementos que poden tamén reducir a porcentaxe de carbono-13.[90]
Suxeriuse que as erupcións de metano por medio do "fusil de clatratos" estiveron implicadas na extinción de final do Permiano ("a Gran Mortaldade") e no máximo térmico de Paleoceno–Eoceno, que estivo asociado a unha das extincións menores.
Un evento anóxico é unha situación na que as capas media e superior do océano se fan deficientes ou totalmente carentes de oxíxeno. As súas causas son complexas e controvertidas, pero todos os exemplos coñecidos están asociados con algún grave e prolongado quecemento global, principalmente causado por un volcanismo masivo duradeiro.[91]
Suxeriuse que os eventos anóxicos causaron ou contribuíron ás extincións do Ordovícico-Silúrico, do final do Devoniano, do Permiano-Triásico e do Triásico-Xurásico, e tamén a varias extincións menores (como os eventos Ireviken, Mulde, Lau, Toarciano e Cenomaniano-Turoniano). Por outra parte, existen extensos depósitos de lousas negras desde mediados do Cretáceo, que indican eventos anóxicos, pero que non están asociados con extincións en masa.
Os cambios da biodispoñibilidade de elementos traza esenciais (en particular o selenio) ata chegar a mínimos potencialmente letais demostrouse que coincide con algúns eventos de extinción en masa e que probablemente contribuíu a eles, como polo menos en tres eventos nos océanos, como son os do final do Ordovícico, durante o Devoniano medio e tardío, e o do final do Triásico. Durante os períodos de concentracións baixas de oxíxeno o selenato (Se6+), que é moi soluble, convértese en selenuro (Se2+), Se elemental e complexos de organo-selenio, que son moito menos solubles. A biodispoñibilidade do selenio durante estes eventos de extinción diminúe ao 1% da actual concentración oceánica, un nivel que é letal para moitos dos organismos existentes.[92]
Kump, Pavlov e Arthur (2005) propuxeron que durante o evento de extinción do Permiano-Triásico o quecemento tamén alterou o equilibrio oceánico entre o plancto fotosintetizador e as bacterias redutoras de sulfato de augas profundas, causando emisións masivas de sulfuro de hidróxeno, que envelenaron os seres vivos tanto en terra coma no mar e debilitaron seriamente a capa de ozono, expoñendo os organismos vivos que aínda sobrevivían a niveis letais de radiación UV.[93][94][95]
Unha inversión oceánica é unha alteración da circulación termohalina que fai que a auga superficial (que é máis salina que a profunda debido á evaporación) afúndese en vertical, mentres que a auga profunda anóxica vai á superficie e, por tanto, mata a maior parte dos organismos que respiran oxíxeno que habitan a profundidades medias e na superficie. Pode ocorrer tanto ao principio coma ao final dunha glaciación, aínda que unha inversión ao principio da glaciación é máis perigosa porque o período cálido precedente terá creado un gran volume de auga anóxica.[96]
A diferenza doutras catrástrofes oceánicas como as regresións (baixadas do nivel do mar) e eventos tóxicos, as inversións non deixan "sinaturas" doadamente identificables en rochas e son consecuencias teóricas das conclusións dos investigadores sobre outros eventos climáticos e mariños.
Suxeriuse que a inversión oceánica causou ou contribuíu ás extincións do Devoniano tardío e do Permiano-Triásico.
Unha explosión de raios gamma (situada a menos de 6 000 anos luz de distancia) sería potente dabondo como para destruír a capa de ozono da Terra, deixando os organismos en situación vulnerable á radiación ultravioleta do Sol.[97] As explosións de raios gamma son bastante raras, e ocorren só unhas poucas veces nunha determinada galaxia por millón de anos.[98] Suxeriuse que unha supernova ou explosión de raios gamma causou a extinción do final do Ordovícico.[99]
Unha teoría afirma que os períodos nos que se incrementan as inversións xeomagnéticas debilitan o campo magnético da Terra o suficiente como para expoñer a atmosfera ao vento solar, causando que os ións oxíxeno escapen da atmosfera a unha velocidade incrementada en 3 ou 4 ordes, o que ten como resultado unha desastrosa caída nos niveis de oxíxeno.[100]
O movemento dos continentes colocándose nalgunhas configuracións pode causar ou contribuír ás extincións de varias maneiras: ao facer iniciar ou finalizar unha era glacial; ao cambiar as correntes oceánicas e ventos e alterar desa maneira o clima; abrindo vías mariñas ou creando pontes de terra, que expoñen a especies que estaban previamente illadas á competición, ao cal están mal adaptadas (por exemplo, a extinción da maior parte dos ungulados nativos de Suramérica e todos os seus grandes metaterios despois de que se crease unha ponte de Terra entre Norte e Suramérica). Ocasionalmente a deriva continental crea un supercontinente que contén a maior parte das terras emerxidas, que ademais dos efectos indicados antes reduce a área total de plataforma continental (a parte máis rica en especies do océano) e produce un vasto e árido interior continental, que pode ter variacións estacionais extremas.
Outra teoría é que a creación do supercontinente Panxea contribuíu á extinción en masa do Permiano-Triásico. A Panxea estaba case completamente formada na transición do Permiano medio ao Permiano tardío, e o diagrama de "Diversidade de xéneros mariños" do inicio deste artigo mostra un nivel de extinción que empeza nese momento, que podería facer merecente a ese período de ser incluído entre os "cinco grandes" eventos de extinción se non fose porque quedou eclipsado pola intensa "Gran Mortaldade" ao final do Permiano.[101]
Propuxéronse moitas outras hipóteses, como o espallamento de novas doenzas ou a simple eliminación por competición despois da aparición dunha innovación biolóxica especialmente exitosa. Pero todas foron rexeitadas, xeralmente por algunha das seguintes razóns: requiren acontecementos ou procesos dos cales non hai evidencias; asumen mecanismos que son contrarios ás evidencias dispoñibles; están baseadas noutras teorías que foron rexeitadas ou quedaron superadas.
Hoxe, os científicos están preocupados porque as actividades humanas poderían causar a extinción de máis plantas e animais que en calquera momento do pasado. Xunto con cambios causados polo humanidade no clima (ver arriba), algunhas destas extincións poderían ser causadas polo exceso de caza ou pesca, especies invasoras ou perda de hábitat.
O quecemento global e a futura expansión do Sol, combinado co declive final do nivel do dióxido de carbono atmosférico podería realmente causar unha extinción en masa aínda maior que as coñecidas, tendo o potencial para eliminar incluso os microbios, na que as temperaturas globais en aumento causadas polo Sol en expansión incrementarían gradualmente a velocidade de meteorización das rochas, o cal á súa vez elimina cada vez máis dióxido de carbono da atmosfera. Cando os niveis de dióxido de carbono son demasiado baixos (quizais de 50 ppm), toda a vida vexetal desaparecerá, aínda que as plantas máis simples como as herbas e musgos poderían sobrevivir moito máis tempo, ata que os niveis de CO2 baixasen a 10 ppm.[102][103]
Coa desaparición de todos os organismos fotosintéticos, o oxíxeno atmosférico xa non poderá ser restituído, e finalmente será eliminado por reaccións químicas na atmosfera, quizais polas erupcións volcánicas. Finalmente, a perda de oxíxeno causará que toda a vida aeróbica que quedase morra por asfixia, deixando só procariotas anaeróbicos simples. Cando o Sol se faga un 10% máis brillante dentro de aproximadamente mil millóns de anos,[102] a Terra sufrirá un efecto invernadoiro húmido como resultado de que os seus océanos empezarán a ferver e evaporarse, mentres que o núcleo externo líquido da Terra arrefriará e solidificará debido á expansión do núcleo interno e causará que o campo magnético da Terra desapareza. Na ausencia dun campo magnético, as partículas cargadas do Sol farán diminuír a atmosfera e causarán un maior incremento da temperatura terrestre a unha media de ~420 K (147 °C) dentro de 2,8 miles de millós de anos, causando que os últimos restos de vida na Terra se extingan definitivamente. Este é o exemplo máis extremo de extinción nun evento de extinción causado polo clima. Isto só ocorrerá nas fases finais da evolución do Sol, pero causará a extinción en masa final da historia da Terra.[102][103]
O impacto dos eventos de extinción en masa foi moi variado. Despois dun evento de extinción maior, xeralmente só sobreviven especies de malezas grazas á súa capacidade de vivir en diversos hábitats.[104] Posteriormente, as especies diversificáronse e ocuparon nichos baleiros. Xeralmente, a biodiversidade recupérase nun período de 5 a 10 millóns de anos despois dun evento de extinción. Nas extincións en masa máis graves pode tardarse de 15 a 30 millóns de anos.[104]
O peor evento, a extinción do Permiano-Triásico, devastou a vida sobre a Terra e estímase que matou o 90% das especies. A vida pareceu recuperarse rapidamente despois desta extinción, pero isto foi principalmente en forma de organismos pioneiros, como o rexo Lystrosaurus. As investigacións máis recentes indican que os animais especializados que formaron ecosistemas complexos, con alta biodiversidade, redes tróficas complexas e unha variedade de nichos, tardaron máis tempo en recuperarse. Crese que esta longa recuperación se debeu a sucesivas ondas de extinción que impedían a recuperación, e tamén a estreses ambientais prolongados para os organismos, que continuaron ata o Triásico temperán. Investigacións recentes indican que a recuperación non empezou ata o inicio do Triásico medio, de 4 a 6 Ma despois da extinción;[105] e algúns autores estiman que a recuperación non foi completa ata 30 Ma despois da extinción P-T, é dicir no Triásico tardío.[106] Despois da extinción P-T, houbo un incremento na provincialización, na que as especies ocupaban áreas menores, quizais eliminando os propietarios dos nichos e establecendo a base para unha eventual rediversificación.[107]
Os efectos das extincións en masa sobre as plantas son algo máis difíciles de cuantificar, dado os nesgos inherentes no rexistro fósil das plantas. Algunhas extincións en masa (como as do final do Permiano) foron igualmente catastróficas para as plantas, mentres que outras, como as do final do Devoniano, non afectaron a flora.[108]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.