tres enteiros positivos, os cadrados de dous suman igual que o cadrado do terceiro From Wikipedia, the free encyclopedia
Unha terna pitagórica consta de tres números enteiros positivos a, b e c, de tal forma que a2 + b2 = c2. Tal terna escríbese habitualmente (a, b, c), un exemplo coñecido é (3, 4, 5). Se (a, b, c) é unha terna pitagórica, entón tamén o é (ka, kb, kc) para calquera número enteiro positivo k. Un triángulo cuxos lados son unha terna pitagórica é un triángulo rectángulo e chámase triángulo pitagórico.
Unha terna pitagórica primitiva é aquela na que a, b e c son coprimos (é dicir, non teñen un divisor común maior que 1).[1] Por exemplo, (3, 4, 5) é unha terna pitagórica primitiva mentres que (6, 8, 10) non o é.
Procurar solucións enteiras da ecuación a2 + b2 = c2 é unha ecuación diofantiana. Así, as ternas pitagóricas están entre as solucións máis antigas coñecidas dunha ecuación diofantiana non linear.
Hai 16 ternas pitagóricas primitivas de números por debaixo de 100:
(3, 4, 5) | (5, 12, 13) | (8, 15, 17) | (7, 24, 25) |
(20, 21, 29) | (12, 35, 37) | (9, 40, 41) | (28, 45, 53) |
(11, 60, 61) | (16, 63, 65) | (33, 56, 65) | (48, 55, 73) |
(13, 84, 85) | (36, 77, 85) | (39, 80, 89) | (65, 72, 97) |
A fórmula de Euclides é unha fórmula fundamental para xerar ternas pitagóricas dado un par arbitrario de números enteiros m e n con m > n > 0. A fórmula indica que os números enteiros
forman unha terna pitagórica. Por exemplo, dado
xera a terna primitiva (36,77,85):
A terna xerada pola fórmula de Euclides é primitiva se e só se m e n son coprimos e exactamente un deles é par.[2]
Malia xerar todas as ternas primitivas, a fórmula de Euclides non produce todas as ternas; por exemplo, (9, 12, 15) non se pode xerar usando os números enteiros m e n. Pódense conseguir todas incluíndo un parámetro:
Escoller m e n entre certas secuencias enteiras dá resultados interesantes. Por exemplo, se m e n son números de Pell consecutivos, a e b diferirán en 1.
As propiedades dunha terna pitagórica primitiva (a, b, c) con a < b < c (sen especificar cal de a ou b é par e cal é impar) inclúen:
A fórmula de Euclides para unha terna pitagórica
pódese entender en termos da xeometría dos puntos racionais na círcunferencia unitaria (Trautman 1998).
De feito, un punto do plano cartesiano con coordenadas (x, y) pertence á circunferencia unitaria se x2 + y2 = 1. O punto é racional se x e y son números racionais, é dicir, se hai coprimos enteiros a, b, c tal que
Ao multiplicar os dous membros por c2, pódese ver que os puntos racionais da circunferencia están en correspondencia un a un coas ternas pitagóricas primitivas.
O circunferencia unitaria tamén se pode definir mediante unha ecuación paramétrica
A fórmula de Euclides para as ternas pitagóricas e a relación inversa t = y / (x + 1) significan que, agás para (−1 , 0), un punto (x, y) na circunferencia é racional se e só se o valor correspondente de t é un número racional. Teña en conta que t = y / (x + 1) = b / (a + c) = n / m tamén é a tanxente da metade do ángulo que está oposto ao lado do triángulo de lonxitude b.
Hai unha correspondencia entre os puntos da circunferencia unitaria con coordenadas racionais e as ternas pitagóricas primitivas. Neste punto, as fórmulas de Euclides pódense derivar mediante métodos de trigonometría ou de forma equivalente usando a proxección estereográfica.
Para o enfoque estereográfico, supoña que P′ é un punto no eixo x con coordenadas racionais
Daquela, pódese demostrar mediante álxebra básica que o punto P ten coordenadas
que é racional.
En termos de xeometría alxébrica, a variedade alxébrica de puntos racionais na circunferencia unitaria é biracional á recta afín sobre os números racionais. A circunferencia unitaria chámase así unha curva racional, e é este feito o que permite unha parametrización explícita dos puntos (número racional) sobre ela por medio de funcións racionais.
As ternas pitagóricas tamén se poden codificar nunha matriz cadrada da forma
Unha matriz desta forma é simétrica con determinante
que é cero precisamente cando (a,b,c) é unha terna pitagórica. Se X corresponde a unha terna pitagórica, entón como matriz debe ter rango 1.
Dado que X é simétrico, dun resultado en álxebra linear dedúcese que hai un vector columna ξ = [m n]T tal que o produto externo
|
(1) |
cúmprese. Dado que ξ e -ξ producen a mesma terna pitagórica, o vector ξ pódese considerar un espinor (para o grupo de Lorentz SO(1, 2)). En termos abstractos, a fórmula de Euclides significa que cada terna pitagórica primitiva pode escribirse como o produto exterior consigo mesmo dun espinor con entradas enteiras, como en (1).
O grupo modular Γ é o conxunto de matrices 2×2 con coeficientes enteiros
con determinante igual a un: αδ − βγ = 1. O grupo modular actúa sobre a colección de todos os espinors enteiros. Ademais, o grupo é transitivo na colección de espinors enteiros con entradas coprimas. Pois se [m n]T ten coeficientes coprimos, entón
onde se seleccionan u e v (mediante o algoritmo de Euclides) para que cumpran mu + nv = 1.
Ao actuar sobre o espinor ξ en (1), a acción de Γ pasa a ser unha acción sobre as ternas pitagóricas, sempre que se permitan ternas con compoñentes posiblemente negativas. Así, se A é unha matriz en Γ, entón
|
(2) |
dá lugar a unha acción sobre a matriz X en (1).
Alternativamente, podemos restrinxir a acción a aqueles valores de m e n para os que m é impar e n é par. Sexa o subgrupo Γ(2) de Γ o kernel do homomorfismo de grupo
onde SL(2,Z2) é o grupo linear especial sobre o corpo finito Z2 de enteiros módulo 2. Entón Γ(2) é o grupo de transformacións unimodulares que conservan a paridade de cada entrada. Así, se a primeira entrada de ξ é impar e a segunda é par, entón o mesmo ocorre con Aξ para todo A ∈ Γ(2). De feito, baixo a acción (2), o grupo Γ(2) actúa transitivamente sobre a colección das ternas pitagóricas primitivas (Alperin 2005).
Así temos que o grupo Γ(2) é o grupo libre cuxos xeradores son as matrices
En consecuencia, cada terna pitagórica primitiva pode obterse dun xeito único como produto das copias das matrices U e L.
Se consideramos o cadrado dun número enteiro gaussiano, obtemos a seguinte interpretación directa da fórmula de Euclides como a representación dun cadrado perfecto dun enteiro gaussiano.
Usando os feitos de que os enteiros gaussianos son un dominio euclidiano e que para un enteiro gaussiano p, é sempre un cadrado, é posible demostrar que unha terna pitagórica corresponde ao cadrado dun primo enteiro gaussiano se a hipotenusa é un número primo.
Se o número enteiro gaussiano non é primo, entón é o produto de dous enteiros gaussianos p e q con e enteiros. Dado que as magnitudes se multiplican nos enteiros gaussianos, o produto debe ser , que cando se eleva ao cadrado para atopar unha terna pitagórica debe ser composto. O contrapositivo completa a proba.
é equivalente á terna especial Pitagórica,
Hai un número infinito de solucións a esta ecuación xa que a resolución das variables implica unha curva elíptica. Algunhas solucións pequenas,
Un xeito de xerar solucións a é parametrizar a, b, c, d en termos de enteiros m, n, p, q como segue:[11]
Para o caso do Teorema do círculo de Descartes onde todas as variables son cadrados,
Euler demostrou que isto é equivalente a tres ternas pitagóricas simultáneas,
Tamén hai un número infinito de solucións, e para o caso especial cando , a ecuación simplifícase a:
con solucións pequenas como e pódense resolver como formas cadráticas binarias.
Un triángulo de Herón defínese habitualmente como aquel con lados enteiros cuxa área tamén é un número enteiro. As lonxitudes dos lados deste triángulo forman unha terna de Herón (a, b, c) con a ≤ b ≤ c. Toda terna pitagórica é unha terna de Herón, porque na terna pitagórica polo menos un dos catetos a, b debe ser par, polo que a área ab/2 é un número enteiro. Non toda terna de Herón é unha terna pitagórica, como mostra o exemplo (4, 13, 15) de área 24.
Se (a, b, c) é unha terna de Herón, tamén o é (ka, kb, kc) onde k é calquera número enteiro positivo; a súa área será o número enteiro que é k2 veces a área enteira do triángulo (a, b, c). A terna de Herón (a, b, c) é primitiva cando a, b, ' 'c son coprimos en conxunto,(non é necesario que sexan coprimos por parellas). Aquí vemos algunhas das ternas de Herón primitivas máis simples que non son ternas pitagóricas:
Pola fórmula de Herón, a condición adicional para que unha terna de números enteiros positivos (a, b, c) con a < b < c sexa terna de Herón é que
ou equivalentemente
sexa un cadrado perfecto distinto de cero divisíbel por 16.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.