termo alxebraico From Wikipedia, the free encyclopedia
En matemáticas, o determinante é unha ferramenta moi potente en numerosos dominios (estudo de endomorfismos, busca de valores propios, cálculo diferencial). É así como se define o determinante dun sistema de ecuacións, o determinante dun endomorfismo, ou o determinante dun sistema de vectores. Foi introducido inicialmente na álxebra para resolver o problema de determinar o número de solucións dun sistema de ecuacións lineais.
Coma en moitas outras operacións, o determinante pode ser definido por unha colección de propiedades axiomas que se resumen coa expresión «forma n - lineal alternada». Esta definición permite facer un estudo teórico completo e ampliar aínda máis os seus campos de aplicación. Mais o determinante tamén pode concibir como unha xeneralización no espazo de dimensión n da noción de superficie ou de volume orientados. Este aspecto, a miúdo esquecido, é un enfoque práctico e luminoso das propiedades do determinante.
Matematicamente en forma de matriz:
A expresión xeométrica equivalente:
onde é o ángulo formado polos vectores e .
O determinante dunha matriz 3 × 3 é
Por exemplo:
Os determinantes tamén se poden definir por algunhas das súas propiedades. É dicir, o determinante é a función única definida nas matrices n × n que ten as catro propiedades seguintes:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.