Loading AI tools
De Wikipédia, l'encyclopédie libre
En mathématiques, un vecteur de Killing[N 1], ou champ de Killing, est un champ vectoriel[1],[2],[3] sur une variété (pseudo-)riemannienne[2] qui conserve la métrique de cette variété et met en évidence les symétries continues[2],[3] de celle-ci.
Intuitivement un vecteur de Killing peut être vu comme un « champ de déplacement » , c'est-à-dire associant à un point M de la variété le point M' défini par le déplacement de M le long de la courbe passant par M dont est le vecteur tangent. Sa propriété fondamentale est que ce champ représente une isométrie, c'est-à-dire qu'il conserve les distances. Ainsi, la distance entre deux points M et N est égale à la distance entre leurs images M' et N' par l'action de .
Appliqué à une surface (variété de dimension 2) vue comme étant plongée dans un espace à trois dimensions, un tel champ permet par exemple de la faire « glisser » sur elle-même, sans qu'elle ne se déchire ni se plisse.
La formulation mathématique de cette propriété est appelée équation de Killing. Elle stipule que la dérivée de Lie de la métrique riemannienne par rapport au vecteur de Killing est nulle, soit, dans un système de coordonnées quelconque,
D étant la dérivée covariante associée à la métrique.
À partir de celle-ci, on en déduit un certain nombre de propriétés associées aux vecteurs de Killing.
L'éponyme du vecteur est Wilhelm K. J. Killing (-), mathématicien allemand qui l'a introduit en [4],[5],[6],[7],[8].
En contractant l'équation de Killing avec la métrique, on obtient immédiatement :
Un vecteur de Killing est toujours à divergence nulle.
Le produit scalaire d'un vecteur de Killing avec le vecteur tangent d'une géodésique est constant le long d'une trajectoire. Si on note ce vecteur tangent, on a donc
l'opérateur représentant la dérivée par rapport à un paramètre affine de la géodésique.
L'opérateur peut se réécrire, d'après la définition d'une géodésique,
On a donc
En utilisant la règle de Leibniz des dérivées, on obtient alors
Le second terme de l'égalité est nul. En effet, la définition même d'une géodésique est que son vecteur tangent est conservé le long de la géodésique, soit
Le premier terme de l'égalité est également nul. En effet, l'équation de Killing indique que le tenseur est antisymétrique. Sa contraction avec un tenseur symétrique est donc nulle. Ainsi, on a bien
Cette propriété est particulièrement utile pour intégrer l'équation des géodésiques. En effet, l'existence d'un nombre suffisant de vecteurs de Killing permet alors d'exhiber un nombre suffisant de constantes du mouvement qui permettent la résolution immédiate et explicite de l'équation des géodésiques. Un exemple simple est celui de la métrique de Schwarzschild, qui est à la fois à symétrie sphérique et statique. La première propriété permet d'exhiber deux vecteurs de Killing et la seconde un vecteur de Killing supplémentaire. Les constantes du mouvement associées sont la norme du moment cinétique, sa projection le long d'un axe, et une quantité qui dans une approche non relativiste pourrait être identifiée à l'énergie de la particule. Ainsi les lois habituelles de conservation de l'énergie et du moment cinétique de la mécanique classique se traduisent-elles en relativité générale par l'existence de vecteurs de Killing.
En prenant la dérivée de l'équation de Killing et en utilisant les propriétés de commutation des dérivées covariantes, l'on obtient une équation reliant la dérivée seconde d'un vecteur de Killing au tenseur de Riemann. Cette relation s'écrit :
À partir de l'équation de Killing, on effectue une dérivation supplémentaire. On obtient donc :
Les dérivées covariantes ne commutent pas en général, mais peuvent être commutées si on leur adjoint un terme supplémentaire faisant appel au tenseur de Riemann (c'est même la définition du tenseur de Riemann) :
On obtient ainsi
On peut réécrire cette équation en effectuant des permutations sur les indices a, b et c :
En effectuant la somme de ces trois égalités, on obtient
En vertu de la première identité de Bianchi, les termes du membre de droite s'annulent. On a donc
En soustrayant ceci à la première égalité faisant intervenir le tenseur de Riemann, il vient alors
Cette relation possède nombre de conséquences intéressantes :
La contraction d'un vecteur de Killing avec le tenseur énergie-impulsion permet d'exhiber un vecteur de divergence nulle.
En effet, la divergence de la quantité donne
Le premier terme est nul, car il est la contraction d'un tenseur symétrique () et d'un tenseur antisymétrique (, d'après l'équation de Killing). Le second terme est également nul car le tenseur énergie impulsion est par définition de divergence nulle (). On a donc
L'existence de ce vecteur de divergence nulle permet alors de définir des quantités conservées par l'intermédiaire du théorème de Noether.
Dans l'espace de Minkowski et des coordonnées cartésiennes, le vecteur , noté est un vecteur de Killing, qui dit simplement que l'espace de Minkowski est invariant par translation dans le temps. Cela implique alors la conservation de l'énergie[N 2]. De même, les vecteurs sont également des vecteurs de Killing. Cela implique la conservation de la quantité de mouvement. Aucun de ces vecteurs n'est cependant un vecteur de Killing dans un univers en expansion. C'est la raison pour laquelle l'énergie du rayonnement électromagnétique n'est pas conservée au cours du temps : c'est le phénomène de décalage vers le rouge. D'une manière générale, il n'y a pas forcément de vecteurs de Killing dans un espace-temps quelconque. Cela implique qu'en relativité générale, il n'y a pas conservation de l'énergie, sauf cas particuliers, comme celui des espaces asymptotiquement plats.
Toujours dans l'espace de Minkowski, les vecteurs , , sont également des vecteurs de Killing. L'existence de ces vecteurs implique la conservation du moment cinétique. De même, les vecteurs sont trois vecteurs de Killing. Dans la limite non relativiste, ils correspondent à la quantité , soit la valeur de la ie coordonnée à l'instant [N 3]. Ces vecteurs, au nombre de 10, forment tous les vecteurs de Killing linéairement indépendants de l'espace de Minkowski.
Le crochet de Lie de deux vecteurs de Killing et est également un vecteur de Killing
Le crochet de Lie de par s'écrit, en termes de composantes,
Pour que ce vecteur soit un vecteur de Killing, il faut et il suffit qu'il satisfasse à l'équation de Killing. On calcule donc
Les termes comprenant des produits de deux dérivées premières peuvent être manipulés en utilisant l'équation de Killing pour et , de sorte que l'indice c ne porte pas sur la dérivée covariante, mais sur le vecteur. Ainsi, on a
car les termes s'annulent deux à deux. Pour les termes comprenant des dérivées seconde, on utilise également les équations de Killing pour chasser l'indice c des dérivées covariantes. On a
On reconnaît le commutateur des dérivées covariantes, que l'on peut réécrire à l'aide du tenseur de Riemann :
En utilisant enfin les relations d'antisymétrie sur les deux paires d'indices du tenseur de Riemann et en intervertissant les indices muets c et d sur un des deux membres du résultat, on obtient
Ceci permet de munir l'espace des vecteurs de Killing d'une structure d'algèbre de Lie. En relativité générale, c'est par ce biais que sont effectuées certaines classifications des espaces-temps, comme la classification de Bianchi évoquée plus haut qui porte sur les espaces-temps quadridimensionnels dont les sections spatiales sont homogènes.
Lors d'une transformation conforme, un vecteur de Killing perd sa propriété fondamentale et ne satisfait plus à l'équation de Killing. Il satisfait cependant à une autre équation qui peut dans certains cas s'avérer intéressantes. On parle alors de vecteur de Killing conforme.
En relativité générale, un espace-temps (ou une région de celui-ci) est dit statique s'il admet un vecteur de Killing de genre temps qui puisse être vu comme la normale à des hypersurfaces. Pour cela, en plus de l'équation de Killing, il faut que le vecteur de Killing soit proportionnel à un gradient (les hypersurfaces pouvant être vues comme les régions où un certain paramètre est constant). Cette dernière condition s'écrit sous la forme
ce que l'on démontre grâce à un théorème de Frobenius. Dans un espace-temps à quatre dimensions, cette condition est alors équivalente à celle sur la forme duale associée,
où est un tenseur complètement antisymétrique dans tous ses indices.
La métrique de Schwarzschild, est un exemple d'espace-temps statique dans la région extérieure au rayon de Schwarzschild. La métrique de Reissner-Nordström possède la même propriété. La métrique de tels espaces peut s'écrire dans un certain système de coordonnées sous la forme
La staticité se voit :
Un espace-temps est dit stationnaire s'il admet un vecteur de Killing de genre temps, sans que celui-ci possède la propriété d'orthogonalité à des hypersurfaces. Dans le système de coordonnées précédent la métrique associée est plus générale :
Un espace-temps est dit axisymétrique s'il est stationnaire (il possède donc un vecteur de Killing de genre temps , voir ci-dessus) et possède un autre vecteur de Killing de genre espace dont le flot forme des courbes fermées et qui commute avec le précédent :
La métrique de Kerr et celle de Kerr-Newman sont des exemples connus de métriques axisymétriques. Le bivecteur dit, pour des raisons évidentes, de Killing joue un rôle important dans les démonstrations sur les théorèmes sur les singularités.
Un espace-temps stationnaire et axisymétrique est dit circulaire si les 2-surfaces orthogonales aux champs de Killing générant la stationnarité et axisymétrie sont intégrables, c'est-à-dire si elles sont tangentes aux surfaces 2-dimensionnelles[9].
Un espace-temps est dit à symétrie maximale[10] — ou maximalement symétrique[11],[12] — s'il possède un nombre maximal de vecteurs de Killing, à savoir : , où est le nombre de dimensions de l'espace-temps[13],[14].
En géométrie lorentzienne, les trois[15] variétés d'espace-temps à symétrie maximale sont :
En relativité générale, toutes trois sont des solutions de l'équation d'Einstein dans le vide[18] ; elles sont les trois seules de ces solutions dont le tenseur de Weyl est nul[19]. L'espace de Minkowski est le seul des trois dont le tenseur de Riemann est nul[20].
Une équation du type équation de Killing peut se généraliser à des tenseurs d'ordre plus élevé. On parle alors, selon la généralisation choisie, de tenseur de Killing ou de tenseur de Killing-Yano. Dans le cadre des théorèmes sur les singularités, on introduit parfois le concept de bivecteur de Killing, formé à l'aide de deux vecteurs de Killing.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.