En astronomie, un trou noir de Kerr-Newman est un trou noir de masse non nulle avec une charge électrique non nulle et un moment cinétique également non nul.

Historique

Le trou noir de Kerr-Newman[1],[2] (en anglais : Kerr-Newman black hole)[2] est ainsi désigné en l'honneur du physicien Roy Kerr, découvreur de la solution de l'équation d'Einstein dans le cas d'un trou noir en rotation non chargé, et Ezra T. Newman, codécouvreur de la solution pour une charge non nulle, en [2],[3],[4].

Le trou noir de Kerr-Newman est décrit par la métrique du même nom[5].

Métrique de Kerr-Newman

La métrique de Kerr-Newmann est la plus simple des solutions de l'équation d'Einstein à décrire un espace-temps à quatre dimensions, stationnaire, axisymétrique et asymptotiquement plat, en présence d'un champ électromagnétique[6].

La métrique est une solution des équations d'Einstein-Maxwell[7],[8]. Elles s'obtiennent à partir d'un principe variationnel, en ajoutant l'action de Maxwell à celle d'Einstein-Hilbert[9]. Elles consistent en l'équation d'Einstein sans constante cosmologique[10] et couplée avec les équations de Maxwell dans le vide[11].

En coordonnées de Boyer-Lindquist[12], la métrique s'écrit :

[13],[14],

[15] :

[16]

et[15],[17] :

[18]

et finalement[15] :

[19],

est la masse du trou noir, est le moment cinétique et la charge électrique et où est la vitesse de la lumière, est la constante gravitationnelle et est la permittivité du vide.

Ainsi, en coordonnées de Boyer-Lindquist, la métrique de Kerr-Newman peut s'écrire comme celle de Kerr, à savoir[20] :

,

avec[21],[22] :

et[21],[23] :

.

Contrainte et cas extrémal

La métrique de Kerr-Newmann décrit un trou noir si et seulement si [24].

Le cas décrit un trou noir extrémal[25].

Cas limites

Lorsque , la métrique de Kerr-Newmann se réduit à celle de Minkowski[26], mais dans des coordonnées sphéroïdales peu habituelles.

Avec , elle se réduit à la celle de Schwarzschild lorsque [27],[25].

Avec et , elle se réduit à celle de Reissner-Nordström lorsque [28],[25].

Avec et , elle se réduit à celle de Kerr lorsque [29],[25].

Extensions et généralisations

L'extension analytique maximale[30] de la métrique de Kerr-Newnam a été étudiée par Robert H. Boyer (-) et Richard W. Lindquist[31] ainsi que par Brandon Carter[31].

La métrique de Kerr-Newman est une solution exacte de l'équation d'Einstein en l'absence de constante cosmologique (c.-à-d. pour Λ = 0). Elle a été généralisée afin de prendre en compte la présence d'une constante cosmologique non nulle (Λ ≠ 0). La métrique obtenue est dite de Kerr-Newman-de Sitter pour une constante cosmologique strictement positive (Λ > 0) ; et de Kerr-Newman-anti de Sitter pour une constante cosmologique strictement négative (Λ < 0)[32].

Horizons

Un trou noir de Kerr-Newman a deux horizons : un horizon des événements[33] et un horizon de Cauchy[33].

L'aire de l'horizon des événements d'un trou noir de Kerr-Newman est donnée par[34] :

.

La singularité d'un trou noir de Kerr-Newmann est une singularité en anneau[33],[35], consistant en une courbe fermée[36] de genre temps[33],[36] et de rayon [35] dans le plan équatorial[33] [35].

Intérêts

Le résultat de Newmann représente la solution la plus générale de l'équation d'Einstein pour le cas d'un espace-temps stationnaire, axisymétrique, et asymptotiquement plat en présence d'un champ électrique en quatre dimensions. Bien que la métrique de Kerr-Newmann représente une généralisation de la métrique de Kerr, elle n'est pas considérée comme très importante en astrophysique puisque des trous noirs « réalistes » n'auraient généralement pas une charge électrique importante.

Notes et références

Voir aussi

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.