Loading AI tools
type de matière organique solide, synthétique ou hemi-synthétique De Wikipédia, l'encyclopédie libre
Une matière plastique (le plastique en langage courant) est un polymère généralement mélangé à des additifs, colorants, charges (miscibles ou non dans la matrice polymère). Il en existe une large gamme ; moulés par injections, extrudés, étiré en film, généralement façonné à chaud et sous pression, pour aboutir à un semi-produit ou à un objet, y compris fils et fibres (tissus), mastics, revêtements, etc. Il est utilisé dans presque tous les secteurs d'activité. Certains ont des propriétés jamais auparavant réunies, par exemple la transparence et la résistance aux chocs.
Avec environ 400 millions de t/an (en 2022), quantité susceptible de doubler avant 2040, à 90 % issus d'hydrocarbures fossiles il est devenu omniprésent. Et seul environ 9 % du plastique est recyclé (12 % incinérés et le reste mis en décharge ou perdu dans la nature[1], peu à peu dégradé en microplastiques et en nanoplastiques), ce qui fait du déchet plastique un problème préoccupant. En mars 2022, les dirigeants mondiaux et les ministres de l'environnement ont entamé des négociations pour un premier traité international (juridiquement contraignant) au monde visant à éliminer la pollution plastique[1].
Le mot « plastique » dérive du latin plasticus, lui-même issu du grec ancien πλαστικός / plastikós, « relatif au modelage », dérivé du verbe πλάσσω / plássô, « mouler, former », dont dérive aussi le mot plasma.
Si l'on peut faire remonter l'histoire des matières plastiques à l'Antiquité, c'est surtout à partir de la fin du XIXe siècle que leur utilisation se développe avec la mise au point de plastiques synthétiques. Des centaines de chercheurs et de bricoleurs de génie sont à l'origine de cet essor. Les premiers plastiques, artificiels, résultaient de la transformation chimique de polymères naturels tels la cellulose et la caséine (le squelette macromoléculaire étant préservé lors de cette transformation). La première matière plastique industrielle basée sur un polymère synthétique est la Bakélite.
L'histoire des matières plastiques remonte à l'Égypte antique :
Pour couvrir ses besoins, l'Allemagne, rapidement privée de ses ressources en latex naturel, avait produit durant la Première Guerre mondiale du caoutchouc Buna[9], un ersatz de cette substance. Ses recherches sur de nouvelles matières se poursuivirent au cours de la Seconde Guerre mondiale (réalisées notamment par IG Farben) et, en 1945, la production de caoutchouc synthétique s'élevait à un million de tonnes.
À partir de la Libération, l'élan scientifique et technologique insufflé à l'industrie par la guerre se poursuivit et de nouvelles matières furent synthétisées, telles les nouveaux polyamides, le poly(carbonate de bisphénol A) et les polyacétals.
Puis les découvertes de nouvelles matières se firent plus rares :
Les plastiques armés (matériaux composites) [typiquement les résines polyesters et époxyde renforcées fibres de verre (verre : d~2,5)], plus légers à résistance égale que l'acier ou l'aluminium, et insensibles à la corrosion, sont des matériaux non traditionnels. Certains types sont de plus en plus utilisés dans le secteur aéronautique[11].
De nouveaux plastiques plus respectueux de l'environnement (recyclage et biodégradabilité améliorés), moins dépendants du pétrole (réduction de coût), thermostables, plus transparents, incassables, ininflammables ou originaux sont en voie de développement.
Elles varient beaucoup selon les types de plastique dont le spectre propriétés des matériaux plastiques ne cessent de s'améliorer.
On constate l'emploi grandissant de pièces en matières plastiques à la place de pièces métalliques, souvent plus onéreuses, plus sensibles à la corrosion, ou plus lourdes. Certaines caractéristiques techniques diffèrent notablement de celles des métaux :
Les matrices organiques sont des isolants thermiques et électriques, ainsi que les fibres de renfort (sauf fibres de carbone)[12] :
Code | Densité | Taux de cristallinité (%) |
Tv (°C) |
Tf ou Tr (°C)[14] |
Tmaxi (°C)[15] |
Module E (GPa) |
---|---|---|---|---|---|---|
ABS | 1,04-1,12 | 0 | 85-125 | 105-120 | 70-85 | 2,5 |
PA-6 | 1,13 | 50 | 52 | 215 | 85 | 1 |
PA-6,6 | 1,14 | 50 | 57 | 260 | 90 | 1,5 |
PC | 1,20 | 0 | 150 | 220-250 | 120 | 2,4 |
PE-HD | 0,95 | 80-95 | −110 | 124-135 | 90 | 0,8-1,2 |
PE-LD | 0,92 | 50-70 | −110 | 100-125 | 70 | 0,15-0,3 |
PET amorphe | 1,30 | 0 | 65-80 | 255 | 100 | 2,7 |
PET cristallin | 1,40 | 40 | 65-80 | 260 | 100 | 4,1 |
PMMA | 1,18 | 0 | 105 | 130-140 | 60-90 | 3 |
PP | 0,91 | 60-70 | −10 | 165 | 100 | 1,3 |
PS « cristal » | 1,05 | 0 | 80-100 | 100 | 60 | 3,2 |
PVC rigide | 1,38 | 0-5 | 80 | 100-120 | 65 | 2,4 |
La matière de base (la résine) est un polymère[17]. Les résines des matières plastiques sont issues de produits intermédiaires (éthylène, propylène, acétylène, benzène, etc.) dont les matières premières sont le pétrole (notamment grâce au procédé de vapocraquage du naphta), le gaz naturel[18] et le charbon.
Un polymère est une substance composée de macromolécules. Une chaîne polymère est constituée d'un grand nombre d'unités monomères. La viscosité et la résistance mécanique d'un polymère augmentent avec le degré de polymérisation (DP ou n) ; ce dernier définit la longueur des chaînes[19].
Si le degré de polymérisation est supérieur à 3 000, le produit sera une matière plastique ; le DP peut atteindre six millions.
Les matières plastiques sont synthétisées par polymérisation de monomères ou de (pré-) polymères :
La polymérisation est un processus important dans l'industrie chimique car les polymères en résultant doivent présenter les propriétés souhaitées, notamment, la durabilité, l'inertie chimique vis-à-vis de nombreux produits, l'élasticité, la transparence et les résistances mécanique et thermique.
Il existe deux catégories de polymérisations :
Pour améliorer certaines propriétés, les matières plastiques du commerce sont parfois constituées d'une résine de base modifiée par une autre résine ou un élastomère (intérêt de la copolymérisation).
Il n'existe pas de macromolécules bidimensionnelles préparées par synthèse.
Il existe quatre procédés de préparation des polymères : polymérisation en masse, en solution, en suspension et en émulsion. Exemples : les polymères thermoplastiques PE, PVC et PS peuvent être synthétisés par ces quatre méthodes de polymérisation. La copolymérisation fournissant l'ABS s'effectue le plus souvent par le procédé en émulsion aqueuse, grâce à la formation de micelles.
Elle joue un rôle important. Les charges, plastifiants et additifs sont incorporés et dispersés dans la matrice de la résine pour en améliorer les caractéristiques (e x: résistance thermique, au feu, chimique, aux chocs, aux U.V ou au vieillissement, masse volumique, couleur, etc.) ou sa mise en œuvre (souplesse…)[20].
Pour les usages courant, alimentaire surtout, la formulation doit être non toxique. Une fiche de données de sécurité (FDS) de la préparation doit être disponible pour tous.
On distingue (liste non exhaustive) :
On distingue :
Généralement incorporés en faible proportion (mais parfois jusqu'à 50 % du poids de la résine) ils améliorent ou créent certaines propriétés des plastiques.
Beaucoup n'ont pas fait l'objet d'une évaluation complète de sécurité en termes de toxicologie ou d'écotoxicologie et ils deviennent préoccupants car ils sont souvent écotoxiques et libérés en quantité croissante par les plastiques qui se dégradent, notamment en mer dans le contexte d'une large contamination du milieu marin par les plastiques, croissante depuis les années 1950.
Faute de réglementation internationale, et dans l'attente de l'application du règlement REACH, ils sont essentiellement autorisés et contrôlés au niveau national. En Europe, la liste d'additifs de la Directive 2002/72/EC concernant les matières plastiques et des articles qui entrent en contact avec des produits alimentaires est une liste positive (les produits non listés sont interdits) depuis le . Une liste ancienne est consultable[22].
La réticulation (formation d'un réseau tridimensionnel à partir de polymères linéaires) permet la synthèse de polymères tridimensionnels. Elle nécessite des durcisseurs, catalyseurs et/ou accélérateurs[23].
En 2014, les additifs les plus utilisés sont (par quantité décroissante)[26] :
Autres additifs :
Certains de ces additifs sont multifonctions : ainsi, le noir de carbone (ou carbon black) est utilisé depuis très longtemps dans l'industrie des matières plastiques sous forme pulvérulente, à la fois comme pigment, comme stabilisant (à l'oxydation, aux ultraviolets et à la chaleur), comme nanocharge de renforcement des propriétés mécaniques des élastomères et comme conducteur électrique.
On peut classer les polymères en deux types, en fonction de leur comportement à la chaleur : les thermoplastiques (polymères linéaires, ramifiés ou non) et les thermodurcissables [polymères tridimensionnels (réticulés)][32] :
Les polymères thermodurcissables sont souvent rigides et cassants et les polymères thermoplastiques et les élastomères montrent une résistance mécanique médiocre et très affectée par la température.
La structure moléculaire des matériaux polymères solides peut être soit :
Remarque sur l'influence de la tacticité : un polymère atactique (PMMA, PS, etc.), dont la chaîne macromoléculaire présente une forme géométrique irrégulière, ne peut pas cristalliser, contrairement à un polymère isotactique ou syndiotactique.
Les propriétés thermomécaniques d'un polymère dépendent de sa structure moléculaire et son « taux de cristallinité ». ainsi, lors de l'injection, un plastique amorphe est plus tolérant [process plus aisé, retrait (shrinkage en anglais) plus faible au refroidissement] qu'un polymère semi-cristallin (qui a une prédisposition à cristalliser), et le retrait de la matière semi-cristalline est plus important que celui de la matière amorphe, car sa structure est plus compacte (le « module de Young » augmente lorsque le taux de cristallites augmente. Inversement, la limite de déformation élastique diminue).
Les propriétés d'un plastique technique sont souvent jugées optimales quand la cristallinité moyenne permet de combiner une résistance mécanique et thermique de la phase cristalline à la résilience de la phase amorphe (pratiquement 50 à 60 %).
La plupart des thermoplastiques ne sont pas utilisés au-dessus de 120 °C, température à laquelle se produit un ramollissement (pour les amorphes) ou une fusion (pour les semi-cristallins), qui supprime les propriétés mécaniques. Les polymères thermoplastiques amorphes sont utilisés en dessous de leur Tv, à l'état vitreux. En principe, les matières thermodurcissables ont une meilleure tenue thermomécanique (à la chaleur, au feu, au fluage, faible retrait, etc.) et chimique que les thermoplastiques. Les meilleurs thermostables sont des thermodurcissables.
Les matériaux plastiques réagissent aux contraintes d'usage par des déformations, changements de couleur et parfois la rupture selon des seuils qui vont définir leurs propriétés d'usage. Connaître, grâce à la résistance des matériaux, les propriétés intrinsèques des plastiques permet de les choisir judicieusement, selon les fonctions qui leur seront assignées et en fonction du degré de recyclabilité ou biodégradabilité qu'on veut leur accorder.
Leurs propriétés mécaniques intrinsèques sont évaluées via des essais comparatifs, normalisés. En général, on utilise les normes ISO, ASTM et DIN, ou des normes « maisons » lorsque les tests sont directement liés aux propriétés d'usage. Ces tests permettent de prédire les propriétés finales des objets finis. Toutefois, certains caractéristiques structurales liées au degré de cristallinité, à l'orientation des chaînes macromoléculaires, ou aux tensions internes résultant des conditions de mise en œuvre et de refroidissement, peuvent aussi influencer les propriétés de l'objet. Ces propriétés sont dites propriétés de transformation.
En résumé, on distingue :
Un grand nombre d'essais mécaniques utilisés pour caractériser les matières plastiques sont inspirées de techniques d'analyse de métaux et autres matériaux (bois, ciments...) telles les mesures du module d'élasticité, de la résistance à la traction et de l'allongement à la rupture.
Les analyses mécaniques et rhéologiques sont basées notamment sur des essais de traction, compression, cisaillement, flexion et torsion.
Les équipements d'analyse comprennent les appareils de mesure de l'indice de fluidité à chaud (pour les polymères thermoplastiques) (MFI, Melt flow index en anglais)[34], les appareils de traction, les extensomètres, les analyseurs DSC, les viscosimètres (de type rotationnel, cône-plan ou capillaire) (pour les thermoplastiques), les analyseurs DMA (ces deux derniers instruments sont affectés aux mesures dynamiques), les appareils de choc Izod et choc Charpy, etc.
Pour les polymères solides, un simple essai de traction uniaxial permet de mesurer certaines propriétés mécaniques.
Les matériaux se répartissent d'après leur comportement en contrainte-déformation, en trois grandes catégories : rigides (souvent peu ductiles et peu résistants aux chocs), plastiques ou élastomères. Le graphique intitulé « Caractérisation mécanique » obtenu lors d'un essai de traction met en évidence ces trois catégories :
Les matières plastiques ont des propriétés mécaniques influencées par les principaux facteurs suivants :
Globalement, le module d'élasticité et l'allongement à la rupture des polymères rigides se déterminent de la même façon que dans le cas des métaux.
La limite d'élasticité Re des polymères plastiques équivaut sur la courbe à la valeur maximale de la contrainte se situant à la fin de la région élastique linéaire. De plus, la résistance à la traction Rm correspond à la contrainte entraînant une rupture ; elle peut prendre une valeur supérieure ou inférieure à Re.
Les propriétés mécaniques des polymères thermoplastiques et des élastomères dépendent fortement de la température (voir le graphique intitulé « Influence de la température »), des contraintes extérieures et du temps d'observation. Une élévation de température fait passer un matériau thermoplastique d'un comportement rigide et fragile à un comportement ductile et tenace.
Plus que tout autre matériau, les plastiques offrent un large choix de techniques de transformation. Les produits initiaux [formulations complètes (nommées aussi matériaux polymères), compounds] se présentent sous forme de granulé, poudre, pastille, pâte ou liquide. Les matières hygroscopiques (PA, ABS, PBT, PMMA, etc.) subissent un préséchage (par étuvage) avant la mise en œuvre afin d'éviter tout défaut lié à l'humidité sur les pièces plastiques.
Les états plastique ou visqueux sont nécessaires pour mettre en œuvre les techniques de mise en forme des matériaux polymères.
Les transformateurs réalisent les objets finis destinés aux utilisateurs à l'aide de matériels et de matières fournies par les producteurs de polymères ou les compoundeurs.
La mise en forme des polymères thermoplastiques diffère de celle des thermodurcissables :
On distingue :
Comme indiqué plus haut, les plastiques de manière générale peuvent donc prendre de multiples formes, résistances, couleurs, propriétés mais aussi et surtout ce sont des matériaux adaptables à un grand nombre de milieux, d'où une large utilisation. C'est pourquoi ils n'ont pas cessé d'être utilisés dans l'art depuis leur création.
On distingue globalement (hors matériaux composites) :
Autres classifications envisageables : selon leur origine (polymères naturels, artificiels et synthétiques), leur famille physico-chimique (thermoplastiques, thermodurcissables, thermostables, élastomères), leur structure [polymères linéaires (ou monodimensionnels) et tridimensionnels][40].
Les matériaux plastiques composés de polymères à chaîne linéaire ou ramifiée sont en principe fusibles. Les polymères thermoplastiques (ou polyplastes, thermoformables) se déforment et sont façonnables sous l'effet de la chaleur, gardant cette forme en refroidissant (analogie avec la cire des bougies). Ce phénomène réversible permet leur recyclage : les objets sont broyés et « refondus » pour en élaborer d'autres.
Les thermoplastiques sont par ailleurs solubles dans des solvants spécifiques, ce qui permet leur utilisation comme revêtements et colles.
Pour fixer les idées, la plupart des polymères linéaires industriels ont des masses molaires voisines de 105 g mol−1. Une macromolécule linéaire peut avoir une longueur qui dépasse le dixième de micromètre, ses dimensions latérales restant mille fois plus faibles.
Les textiles synthétiques (fils et fibres) sont toujours thermoplastiques. Ils sont apparus en 1940. On compte actuellement plus de quarante types de textiles synthétiques et plus d'un millier de noms commerciaux pour les désigner.
Les polymères thermodurcissables prennent leur forme définitive après la réaction chimique (polymérisation) accompagnant leur transformation. Le réseau tridimensionnel obtenu donne au produit fini son caractère d'irréversibilité thermique. La structure réalisée avec une résine thermodurcissable ne peut varier et se trouve géométriquement figée (analogie avec la cuisson d'un œuf). Plus le composé sera tridimensionnel, plus il sera rigide, cassant, insoluble et infusible.
Exemple : copolymérisation du polyester insaturé en présence de styrène. La structure obtenue est définitive, le produit fini est infusible donc non transformable et non recyclable.
Les élastomères sont des polymères à caractère amorphe ou cristallin présentant des propriétés remarquables en élasticité, amortissement et étanchéité (air, eau). Ils sont thermoplastiques et deviennent thermodurcissables par vulcanisation.
Ils sont employés en général réticulés, et le plus souvent à une température supérieure à leur température de transition vitreuse, sur le plateau caoutchouteux ; utilisation : fabrication de la gomme des pneumatiques [contenant principalement du caoutchouc naturel (NR) et du copolymère élastomère styrène-butadiène (SBR)[41]], bandes transporteuses, tuyaux, durits, coussins, silentblocs, joints, mastics, gants médicaux, chaussures, etc.
L'usage prévaut de réserver le terme de matière plastique à trois grandes familles de matériaux, les thermoplastiques, les thermodurcissables et les plastiques techniques[18], dont la structure, les propriétés physico-chimiques et de mise en œuvre (comportement sous l'action de la chaleur et de la pression) diffèrent totalement. Les résines thermoplastiques sont les plus utilisées industriellement.
Codes ISO 1043-1 | Quelques noms commerciaux[42] | Polymères (désignation courante) | Production industrielle depuis[43] |
ABS | Afcoryl, Bayblend (mélange PC/ABS), Cycolac, Isopak, Lastilac, Lustran, Novodur, Polyflam, Polylac, Polyman, Ronfalin, Terluran, Toyolac, Ugikral, Vestodur | Copolymère acrylonitrile-butadiène-styrène (famille des styréniques) | années 1950 |
CA | Cellidor A, Cellon, Lumarith, Rhodialite, Rhodoïd, Setilitte, Trialithe | Acétate de cellulose (cellulosique) | 1927 |
EPS | Afcolène, Depron, Hostapor, Polyfoam, Roofmate, Sagex, Styrocell, Styrodur, Styrofoam, Styropor, Vestypor | Polystyrène expansé (styrénique) | années 1950 |
PA | Akulon, Altech, Amilan, Bergamid, Capron, DuraForm, Durethan, Eratlon, Ertalon, Grilamid, Grilon, Igamid, Kevlar, Latamid, Lauramid, Maranyl, Minlon, Miramid, Nomex, Nylatron, nylon[5], Nypel, Orgamide, Perlon, Polyloy, Radiflam, Radilon, Renyl, Rilsan, Schulamid, Sniamid, Stanyl (PA-4,6), Staramide, Starflam, Sustamid, Sustaglide, Tactel, Technyl, Trogamid, Ultramid, Versamid, Vestamid, Vydyne, Zytel | Polyamides[44] | 1938 (PA aliphatiques), 1961 (PA aromatiques ou aramides : Nomex) |
PBT | Arnite, Celanex, Crastin, Deroton, Hostadur, Pocan, PTMT, Tenite, Ultradur, Vestodur | Poly(téréphtalate de butylène) (polyester saturé) | 1969 |
PC | Apec, Axxis, Durolon, Gerpalon, Latilon, Lexan, Makrolon, Panlite, Plaslube, Polyman, Sunglass, Tuffak, Xantar | Polycarbonates | 1956 |
PE | Alkathène, Alketh, Dyneema (UHMWPE), Eltex, Hostalen, Lacqtène, Lupolen, Manolène, Marlex, Moplen, Plastazote, Polystone, Polythen, Sclair, Stamylan, Stamylex, Supralen, Surlyn[45], Tupperware, Tyvek, Vestolen A | Polyéthylène (polyoléfine) | 1939 (PEBD), 1955 (PEHD) |
PET, PETE | Arnite, Baydur, Bidim, Dacron, Diolen, Ektar, Ertalyte, Hostadur K et A, Kodar, Mélinex, Mylar, Pocan, Raditer, Rhodester, Rynite, Tenite, Tergal, Terphane, Terylene, Trevira, Ultradur | Poly(téréphtalate d'éthylène) (polyester saturé) | 1946 |
PMMA | Acrigel, Altuglas, Altulite, Bonoplex, Corian, Deglan, Limacryl, Lucite, Metacrilat, Oroglas, Perspex, Plexiglas, Resalit, Vitroflex | Poly(méthacrylate de méthyle) (acrylique) | 1933 |
POM | Acetaver, Bergaform, Celcon, Delrin, Ertacetal, Hostaform, Kematal, Kepital, Kocetal, Ultraform | Polyformaldéhyde (polyacétal) | 1958 |
PP | Amoco, Appryl, Carlona, Eltex, Hostalen PP, Luparen, Moplen, Novolen, Oléform, Polyflam, Profax, Propathene, Prylène, Stamylan P, Trovidur PP, Vestolen P | Polypropène (polyoléfine) | 1957 (PPi), 1992 (PPs) |
PS | Carinex, Edistir, Empera, Gedex, Hostyrène, Lacqrène, Luran, Lustran, Lustrex, Noryl (mélange PPO/PS), Polyflam, Polystyrol, Riviera, Styranex, Styroflex, Styron, Trolitul, Ursaa, Vestyron | Polystyrène (styrénique) | 1935 |
PVAC | Elvacet, Hostaflex[46], Mowilith, Rhovyl, Vinnapas, Vinyon[46] | Poly(acétate de vinyle) (vinylique) | 1928 |
PVC | Benvic, Breon, Corfam, Darvic, Dynel[47], Garbel, Gedevyl, Hostalit, Lacovyl, Lacqvil, Lucolène, Lucovyl, Lucalor, Lucoflex, Micronyl, Mipolam, Nakan, Saran[48], Skaï, Solvic, Tefanyl, Trovidur, Ultryl, Vestolit, Vinidur, Vinnol, Vinnolit, Vinoflex, Vinylite | Poly(chlorure de vinyle) (vinylique) | 1931 |
SAN | Cifra, Elvan, Kostil, Lacqsan, Luran, Lustran, Restil, Tyril, Vestoran | Copolymère styrène-acrylonitrile (styrénique) | années 1950 |
Codes ISO 1043-1 | Quelques noms commerciaux | Polymères | Production industrielle depuis[43] |
EP | Araldite, Devcon, DER, Doroxin, Epikote, Epon, Epotek, Epotuf, Epoxin, Eurepox, Lekutherm, Lopox, Rutapox | Polyépoxydes | 1946 |
MF | Arborite, Formica, Hostaset MF, Melochem, Melopas | Mélamine-formaldéhyde (aminoplastes) | années 1920 |
PF | Bakélite, Cascophen, Catalin, toile bakélisée (Celoron), papier bakélisé, bois bakélisé, Fluosite, Hostaset PF, Luphen, Micarta, Peracite, Tego film, Trolitan, Tufnol | Phénol-formaldéhyde (phénoplastes) | 1910 |
PUR | Baydur, Bayflex, Baygal, Cyanapren, Daltoflex, Definal, Desmodur, Desmolin, Estolan, Lupranat, Lupranol, Luvipren, Moltopren, Napiol, Scurane, Urepan, Voranol, Vulkolian, Vulkollan | Polyuréthanes réticulés | 1940 |
UF | Aerodux, Aerolite, Beckamin, Cascamite, Hostaset UF, Kaurit, Pollopas, Prystal, Urochem | Urée-formaldéhyde (aminoplastes) | 1923 |
UP | Hostaset UP, Leguval, Palatal, Pregmat, Ukapon, Vestopol | Polyesters insaturés | 1950 |
Codes ISO 1043-1 | Quelques noms commerciaux | Polymères | Production industrielle depuis |
PTFE | Algoflon, Ertaflon, Fluon, Gaflon, Halon, Hostaflon, Polyflon, Soreflon, Téflon, Voltalef | Polytétrafluoroéthylène (fluoropolymère) | 1942 |
Les polyimides, le polytétrafluoroéthylène et les silicones peuvent être classés dans les thermostables[49] ou les polymères techniques.
L'importance économique des matières plastiques est majoritaire dans la chimie industrielle. Leur percée est telle que leur consommation actuelle en volume est supérieure à celle des métaux.
Entre 1950 et 2017, selon l'Atlas du plastique de la fondation Heinrich Böll, 9,2 Gt (milliards de tonnes) de matières plastiques ont été produites. Sur plus de 400 Mt (millions de tonnes) produites chaque année dans le monde, contre 2 Mt en 1950, 158 Mt sont utilisées par le secteur de l'emballage. 40 % environ des produits en plastique sont jetés au bout de moins d'un mois[50]. 51% de tous les plastiques sont produits en Asie, où le plus grand producteur est la Chine[51].
La production mondiale de plastiques augmente régulièrement ; 1,5 Mt en 1950[52], 280 Mt en 2011[53], 311 millions de tonnes en 2014[54], 322 millions de tonnes en 2015[55]. La production mondiale de plastiques cumulée depuis 1950 se monte à 8,3 milliards de tonnes (6,3 sont des déchets, dont seuls 9 % ont été recyclés, 12 % ont été incinérés et 79 % accumulés dans des décharges ou dans la nature) et pourrait atteindre 25 milliards de tonnes d’ici à 2050, selon une étude publiée le dans la revue Science Advances[56]. Avec une production mondiale de ~54 Mt en 2001, le polyéthylène [(-CH2-)n] est un polymère de synthèse très consommé[57]. Les plus répandus sont le polypropylène [(-CH2-CH(CH3)-)n], le polyéthylène, le poly(chlorure de vinyle) [(-CH2-CH(Cl)-)n], le polystyrène, le polyuréthane et le poly(téréphtalate d'éthylène) (PET, PETE).
Le PET et le poly(carbonate de bisphénol A) (PC, thermoplastique technique) connaissent une forte progression depuis les années 1990. La production totale du PET était de ~18 Mt en 2001.
La production de matières plastiques de l'Union européenne a augmenté de 10,2 % en 2021 ; elle dépasse de 4,7 % celle de 2019, après sa chute durant la crise du Covid-19[58].
La production de plastique a augmenté de 6,1 % en France en 2021 ; elle reste inférieure de 2 % à son niveau de 2019[58].
La production de plastique a augmenté de 7,8 % en France de 2016 à 2017[59]. Chaque année, 11 200 tonnes de déchets plastique français sont déversés dans la mer Méditerranée[60]. Les rivières sont également atteintes par la pollution aux microplastiques[61]. Selon le commissariat général au développement durable, d'après PlasticsEurope (en 2019), 22 % des déchets plastiques du pays et 26 % des déchets d’emballages plastiques sont recyclés[62] ; et des mesures visant à réduire ou supprimer l’utilisation du plastique sont présentes dans le plan Biodiversité (2018), dans la loi pour la reconquête de la biodiversité (2016), dans la loi de transition énergétique pour la croissance verte (2015), etc. La feuille de route pour l’économie circulaire vise 100 % des déchets plastiques recyclés en 2025[62].
La production mondiale de matières plastiques a progressé de 4,5 % par an en moyenne depuis 1990, selon les estimations de PlasticsEurope pour 2018. La planète consomme trois fois plus de plastique qu'il y a 25 ans, 200 fois plus qu'en 1950. Le potentiel de croissance dans les pays émergents est énorme : un Africain ou un Indien utilise en moyenne 4 kg de plastique par an, contre 60 à 80 kg pour un Européen ou un Américain, selon l'Agence internationale de l'énergie (AIE). L'emballage est le principal débouché : 36 % de la consommation totale, suivi par la construction : 16 % et le textile : 15 %[63].
La consommation par habitant était de 92 kg de plastique en Europe occidentale en 2000. La consommation globale de plastique est passée de 5 Mt dans les années 1950 à presque 100 Mt en 2010[64].
Au sein de celle-ci, le plastique utilisé à des fins éphémères représente plus de 44 % du total ; les activités de packaging (emballage) forment la plus grande partie de cet usage « jetable » des plastiques et, au sein du packaging, le packaging à usage agroalimentaire représente plus de la moitié, en poids, du total[65].
En 2012, outre le packaging, les secteurs du bâtiment, de l'automobile, de l'électricité-électronique et de l'agriculture sont des forts consommateurs de plastiques[54].
De nombreux secteurs d'activité utilisent les matières plastiques[66] :
Le marché des polymères biosourcés [polymères pour lesquels une partie des matières premières provient de ressources renouvelables (surtout, le maïs, le blé, l'eucalyptus et la pomme de terre)] a connu une expansion importante depuis une dizaine d'années. Les bioplastiques commercialisés contiennent entre 30 et 100 % de ressources renouvelables. L'utilisation de biomasse renouvelable atténue le réchauffement climatique par réduction d'émission de gaz à effet de serre (CO2).
Les bioplastiques disponibles sur le marché sont de 20 à 30 % plus chers que les plastiques d'origine pétrochimique. Cependant, l'augmentation de la part « ressources renouvelables » associée à l'augmentation des volumes de production aboutiront à une offre économiquement attractive.
Ces matériaux sont souvent à base d'amidon (polymère abondant, peu cher et facilement transformable) et de fibres (naturelles) de bois, de lin, de chanvre, de sisal ou de jute.
Les bioplastiques restent cantonnés à des usages limités, principalement dans l'emballage (en remplaçant par exemple le PET, PETE), qui concentre 90 % de l'activité[67].
Chaque année, plus de 10 millions de tonnes de plastiques finissent dans les mers et les océans[68] ; une grande partie s'agglomère dans cinq gigantesques gyres dits « soupes de plastiques » ; peu reste en surface, l'essentiel finit sur les côtes ou sombre. Les microplastiques et nanoplastiques se retrouvent aujourd'hui dans tous les environnements.
Sa production a doublé en vingt ans et devrait à nouveau doubler dans les vingt ans et quadrupler avant 2050. Cette production émet d'énormes quantités de gaz à effet de serre ; d'après le Center for International Environmental Law, la production de plastique pourrait émettre 53,5 Gt (milliards de tonnes) de CO2 d'ici à 2050, et 56 Gt en ajoutant l'incinération, ce qui représenterait près de 10 % des émissions totales à ne pas dépasser pour respecter l'Accord de Paris sur le climat[50],[1].
Sous la pression des consommateurs, relayée par les industries utilisatrices de plastique, les producteurs de plastique cherchent des parades ; l'interdiction des sacs plastiques et des produits à usage unique, en particulier en Europe, ne concerneraient que 3 à 4 % de la demande mondiale de plastique, mais si la pression s'accroît encore et si le recyclage se développe fortement, la croissance annuelle du secteur du plastique pourrait se trouver potentiellement divisée par deux. En janvier 2019, une vingtaine de multinationales (productrices de matières plastiques, consommatrices d'emballages et acteurs de la gestion des déchets) ont lancé la controversée Alliance to End Plastic Waste (« Alliance pour l'élimination des déchets plastiques ») qui promet de dépenser au moins un milliard de dollars sur cinq ans pour financer des projets de collecte, de recyclage ou de nettoyage dans les pays émergents[63].
Si les écobilans des bouteilles et de nombreux objets sont complexes, de nombreux impacts sont reconnus. Et selon Nature (2022) « Si rien n'est fait, la production et l'élimination des plastiques seront responsables de 15 % des émissions de carbone autorisées d'ici 2050 si le monde veut limiter le réchauffement climatique à 1,5 °C au-dessus des températures préindustrielles »[1].
Les plastiques, à la différence des polymères naturels, sont peu dégradables et mal biodégradés. Parmi les produits finaux de dégradation, certains de leurs additifs sont des perturbateurs endocriniens, et d'autres (métaux lourds, colorants ou stabilisants) sont toxiques et non biodégradables. Dans les années 1980, on a constaté que des milliards de petits fragments de plastiques (dont fils de nylon, rayonne, etc. perdus par les filets, mais aussi les textiles et fils de couture) étaient apportés en mer, jusque dans l'océan Austral, bien au sud de la convergence antarctique, en mer de Ross[78]. On en a depuis trouvé dans toutes les mers du globe. Les impacts environnementaux sont importants à moyen ou long terme, en particulier quand les plastiques se dégradent en petites particules et participent au transport de polluants organiques et organométalliques ou autres (pesticides, hydrocarbures…) qui peuvent être absorbés par les animaux filtreurs et les poissons et ainsi s'insérer dans la chaîne alimentaire[79].
Les plastiques flottants deviennent des déchets marins qui, même dans des zones éloignées (à plus de 2 000 milles marins du continent le plus proche pour les îles Midway), tuent des espèces protégées et menacées. Les sacs plastiques mangés par des tortues qui les confondent avec des méduses ne sont qu'un des exemples. Un autre problème est celui de nombreux albatros qui meurent, le gésier et l'estomac pleins de dizaines de jouets et objets en plastique, qu'ils ont ingéré en mer ou que leurs parents leur ont apportés au nid. Ces objets sont apportés par les parents à leurs poussins comme s'il s'agissait de nourriture (ils étaient couverts d'œufs ou d'organismes marins comestibles) et à la différence des os ou arêtes avalés par les oiseaux, ils ne peuvent être dissous par les sucs digestifs d'aucun animal, ni ressortir de l'estomac des poussins ou adultes qui finissent par en mourir. Les poussins d'albatros sont ainsi nombreux à mourir d'inanition après avoir ingéré parfois plusieurs dizaines d'objets en plastique (bouchons, morceaux de stylos, gadgets et autres jouets pour enfants, débris de récipients, etc.)[80]. On estime que la proportion d'oiseaux marins ingérant du plastique est passée de 5% dans les années 1960 à 90% dans les années 2020[81].
Selon une étude publiée en 2011 par l'Institut océanographique de San Diego (Californie), on trouvait en 2009 des morceaux de plastique ingérés dans 1 poisson sur 10 dans le Pacifique Nord, et les poissons vivant aux profondeurs moyennes en ingèreraient 24 000 t/an environ[82].
Sur la rive nord de la mer Méditerranée, au large des grandes agglomérations, les déchets solides, constitués à 75 % de plastiques, polluent les fonds marins. La tortue marine, espèce en danger pour l'UICN, s'étouffe avec des sacs plastiques qu'elle prend pour des méduses[83].
La combustion de la plupart des matières plastiques libère de nombreux polluants et toxiques[84], en particulier lorsqu'il s'agit de PVC (organochloré)[réf. souhaitée].
En 2012, l'Union européenne plus la Norvège et la Suisse ont produit 25 millions de tonnes de déchets plastiques ; le taux (approximatif) de recyclage des plastiques est égal à 2 % au niveau mondial, à 25 % en Europe et à 20 % en France[85].
Le vortex de déchets du Pacifique nord, le plus grand vortex de déchets au monde, contient une telle accumulation de plastique qu'il est surnommé le « septième continent ». Une étude du WWF parue en 2019 indique que la quantité de déchets plastiques accumulée dans l’océan pourrait doubler d’ici 2030 et atteindre 300 millions de tonnes[86].
Un autre phénomène, encore émergent, est la diffusion massive depuis les années 1990 de microplastiques et microbilles de plastique dans des centaines de produits cosmétiques, dentifrices, savons et shampoings, que l'on retrouve sous forme de déchets mal retenus par les stations d'épuration, dans les cours d'eau, les lacs et la mer[87].
Le poisson et les fruits de mer sont une source importante de protéines pour les humains (6,1 % des protéines alimentaires dans le monde en 2007[88]). Les microplastiques ingérés par les poissons, mollusques bivalves et crustacés sont consommés par l'homme qui est situé en fin de réseau trophique. Selon un rapport commandé par le WWF à l'université de Newcastle (Australie), et publié en 2019, un individu moyen pourrait ingérer jusqu'à cinq grammes de plastique chaque semaine.
Plusieurs chercheurs s'intéressent à la biodégradation du plastique par des microorganismes[89]. En 2019, des chercheurs de l'université technique de Crète ont notamment découvert que des bactéries étaient capables de digérer le plastique. Ils utilisèrent pour cela deux types de plastiques altérés, du polyéthylène et du polystyrène, qu’ils introduisirent dans une solution salée contenant soit des bactéries pélagiques, soit des bactéries capables de vivre uniquement avec du plastique comme source de carbone. Les scientifiques ont suivi les matériaux durant 5 mois. Les résultats montrèrent que le poids du polyéthylène avait chuté de 7 % et celui du polystyrène de 11 %, donnant ainsi un espoir pour détruire efficacement la pollution plastique océanique et marine[90].
En 2019, l’ONG néerlandaise The Ocean Cleanup présente The interceptor, péniche autonome et fonctionnant à l'énergie solaire dont l'objectif est de récupérer les déchets présents dans les rivières à l'aide de flotteurs. Automatique, une fois les bennes remplies, le bateau les ramène vers un centre de tri. Deux prototypes sont expérimentés en Indonésie et en Malaisie[91].
Le recyclage est un procédé de traitement des matériaux qui permet de réintroduire, dans le cycle de production d'un produit, des matériaux qui le composent.
Selon l'Atlas du Plastique de la Fondation Heinrich-Böll, sur les 9 200 Mt de plastiques produites entre 1950 et 2017, seules 600 Mt ont été recyclées ; 900 Mt ont été incinérées, 2 200 Mt sont en cours d'utilisation et 5 000 Mt ont été jetées. En 2017, seulement 14 % des emballages plastiques sont recyclés. La France est un des principaux consommateurs de plastique en Europe : elle en utilise 4,8 Mt par an, soit 70 kilogrammes par habitant. Les emballages sont le premier secteur consommateur de plastique (45 %) ; ils sont responsables de près de 60 % des 3,5 Mt de déchets plastiques produits chaque année, et leur taux de recyclage est de 26 %[50].
La problématique quant au recyclage des polymères provient essentiellement du fait que ces derniers sont rarement utilisés seuls. Pour faciliter la mise en forme, les procédés industriels ont souvent recours à des plastifiants et des charges. En effet, la fabrication d'une bouteille en plastique « recyclé » par exemple nécessite d'une part du plastique recyclé, et d'autre part du plastique vierge. Le pourcentage actuel de plastique recyclé dans une bouteille en plastique avoisine les 25 %[92]. Certaines marques comme Évian veulent atteindre un taux de 100 %[92]. D'autres entreprises (Coca Cola par exemple), sont parfois montrées du doigt car elles disent vouloir atteindre un certain taux alors qu'en réalité il semblerait qu'elles ne fassent aucun effort pour atteindre leur objectif[93]. Cependant, des nouveaux procédés permettent de recycler les polymères en fin de vie.
En raison de leur pouvoir calorifique élevé, ils permettent par incinération d'en obtenir une valorisation énergétique (production d'électricité ou de chaleur à usage industriel ou domestique). On peut aussi procéder par :
La plupart des emballages des produits de la vie quotidienne sont à base de matières plastiques. De nombreuses étapes de transformation du polymère sont pour cela nécessaires. Chaque opération ajoute une valeur au produit. La tendance constatée est que le coût de recyclage augmente considérablement si l'on désire un matériau d'une grande pureté.
Pour aider au recyclage des articles jetables, la Société de l'industrie plastique a conçu en 1988 un système de marquage par type de matière plastique, le code d'identification des résines. Un emballage utilisant ce système est marqué d'un triangle fléché à l'intérieur duquel se trouve un numéro indiquant le type de plastique utilisé :
À partir de 2014, des pays développés comme la Chine refusent l'importation de déchets plastiques en provenance des États-Unis, en raison de différents commerciaux ou de guerre commerciale[96],[97].
À partir de 2018, des pays en développement comme la Chine et l'Indonésie refusent l'importation de déchets plastiques destinés au recyclage[98].
Aux États-Unis, seule une petite partie des plastiques 1 et 2 sont recyclés[96].
[99]Les pourparlers sur un traité juridiquement contraignant ont démarré en 2022, sous l'égide du PNUE, et devraient durer deux à trois ans[1].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.