Loading AI tools
composé chimique de formule chimique CH4 De Wikipédia, l'encyclopédie libre
Le méthane est un composé chimique de formule chimique CH4, découvert et isolé par Alessandro Volta entre 1776 et 1778. C'est l'hydrocarbure le plus simple et le premier terme de la famille des alcanes. Comme fluide frigorigène, il porte la dénomination « R50 » dans la nomenclature des réfrigérants, régie par la norme 34-1992 d'ANSI/ASHRAE.
Méthane | |
Structure de la molécule de méthane. |
|
Identification | |
---|---|
Nom UICPA | méthane |
Synonymes |
hydrure de méthyle[1] |
No CAS | |
No ECHA | 100.000.739 |
No CE | 200-812-7 |
PubChem | 297 |
SMILES | |
InChI | |
Apparence | gaz comprimé ou liquéfié, incolore et inodore[2] |
Propriétés chimiques | |
Formule | CH4 [Isomères] |
Masse molaire[3] | 16,042 5 ± 0,001 1 g/mol C 74,87 %, H 25,13 %, |
Propriétés physiques | |
T° fusion | −182,47 °C[4] |
T° ébullition | −161,52 °C[4] |
Solubilité | 22 mg l−1 (eau, 25 °C)[5] |
Paramètre de solubilité δ | 11,0 MPa1/2 (25 °C)[6] |
Masse volumique | 422,62 kg·m-3 (−161 °C, liquide) 0,670 9 kg·m-3 (15 °C, 1 bar, gaz)[4] |
T° d'auto-inflammation | 537 °C[2] |
Point d’éclair | Gaz Inflammable[2] |
Limites d’explosivité dans l’air | 4,4–17 %vol[4] |
Pression de vapeur saturante | 2 atm (−152,3 °C); 5 atm (−138,3 °C); |
Point critique | 4 600 kPa[8], −82,6 °C[9] |
Vitesse du son | 1 337 m·s-1 (liquide, −161,5 °C) 450 m·s-1 (gaz, 27 °C, 1 atm)[10] |
Thermochimie | |
ΔfH0gaz | −74,87 kJ·mol-1[11] |
Cp | |
PCS | 890,8 kJ·mol-1[13] (25 °C, gaz) |
PCI | 803,3 kJ·mol-1[14] |
Propriétés électroniques | |
1re énergie d'ionisation | 12,61 ± 0,01 eV (gaz)[15] |
Précautions | |
SGH[16] | |
H220 |
|
SIMDUT[17] | |
A, B1, |
|
Transport | |
Écotoxicologie | |
LogP | 1,09[2] |
Unités du SI et CNTP, sauf indication contraire. | |
modifier |
Assez abondant dans le milieu naturel, le méthane est un combustible à fort potentiel. Gazeux dans les conditions normales de température et de pression, il peut être transporté sous cette forme, généralement par gazoduc, ou à l'état liquéfié par des méthaniers et plus rarement des camions.
D'énormes quantités de méthane sont enfouies dans le sous-sol sous forme de gaz naturel. L'essentiel du méthane des terrains sédimentaires est produit de façon anaérobie par les archées dites méthanogènes. De grandes quantités, difficiles à évaluer, sont également produites par réaction de l'eau de mer sur les péridotites des dorsales océaniques et présentes sur le plancher océanique sous forme d'hydrates de méthane (stables à basse température et haute pression).
Les volcans de boue, les énergies fossiles, les décharges publiques (gaz de décharge), la digestion du bétail (notamment des ruminants), les rizières, les estuaires pollués (méthane des zones humides, gaz de marais) et les feux de forêts dégagent aussi beaucoup de méthane.
Le méthane est naturellement présent dans l'atmosphère terrestre, mais les apports anthropiques ont plus que doublé sa concentration depuis la révolution industrielle. Elle atteignait 1 748 ppb en 1998. Après une période de stabilisation de 1999 à 2006 à environ 1 774 ppb, la croissance de sa concentration a repris en 2007 à un rythme de 5 à 15 ppb par an, atteignant 1 931 ppb en . Des analyses isotopiques suggèrent que cet accroissement récent du méthane atmosphérique serait principalement d'origine non fossile.
il persiste moins de dix ans dans l'atmosphère, progressivement détruit par des radicaux hydroxyle OH•, mais c'est un gaz à effet de serre bien plus puissant que le dioxyde de carbone CO2, avec un potentiel de réchauffement global 28 fois plus élevé, responsable, au niveau actuel de sa concentration, de quelques pourcents de l'effet de serre total actuel. Ainsi, à titre comparatif, sur un horizon de cent ans, relâcher une certaine quantité de méthane dans l'atmosphère a un effet sur le réchauffement climatique environ neuf fois plus important que de brûler cette même quantité de méthane en CO2. [18]
En 1776, Alessandro Volta découvre le méthane en étudiant le gaz des marais de l'îlet Partegora, qui s'échappait de zones humides proches de sa maison[19]. Il en prélève des capsules issues du sédiment du lac Majeur[20] et en isole la fraction inflammable[21] dont il comprend qu'il est issu de la décomposition des plantes[22].
En 1910, Söhngen écrit que le méthane se forme de façon si considérable aux Pays-Bas « qu'en différents lieux on s'en sert pour l'éclairage et le chauffage de fermes et de maisons »[22].
C'est à cause du grisou (essentiellement constitué de méthane), responsable jusqu'à nos jours de nombreuses catastrophes minières, que sont mises au point les lampes de sûreté dans les mines de charbon, notamment la lampe de Davy (1817).
L'impact du méthane sur le climat est inconnu, puis suspecté jusqu'en 1976 où l'on démontre que le méthane est effectivement un puissant gaz à effet de serre[23].
Les observations issues de l'exploration spatiale ont montré l'omniprésence du méthane dans l'Univers[réf. nécessaire].
Sur la Terre, en tant que gaz à effet de serre, le méthane a toujours joué un rôle majeur dans le cycle du carbone, la chimie atmosphérique et le climat mondial. Du méthane d'origine abiotique, comme du CO2, était très présent dans l'atmosphère de la Terre primitive avant que la vie n'y apparaisse et n'y introduise l'oxygène (qui a permis l'apparition de la couche d'ozone). Après l'apparition de la vie bactérienne, l'essentiel du méthane terrestre a eu une origine biologique (fossile ou directe).
Des émissions géologiques naturelles de méthane fossile existent encore, aujourd'hui principalement liées au volcanisme (environ 52 Tg, soit 52 Mt par an de méthane émis, représentant 10 % environ des émissions annuelles)[24].
Le calcul des émissions géologiques passées, et plus encore l'évaluation des sources de méthane selon les époques, ont été associés à de grandes incertitudes, mais elles se précisent. En 2017, Petrenko et al. ont quantifié dans des carottages de glace polaire le méthane contenant du radiocarbone (14CH4), montrant que le méthane d'origine géologique n'a pas dépassé durant la dernière période de réchauffement (fin de la dernière glaciation) 15,4 Tg/an, soit 15,4 Mt (95 % de confiance), en moyenne lors du réchauffement brutal qui s'est manifesté entre le Dryas récent et le préboréal (il y a environ 11 600 ans). Ces émissions « géologiques » n'étant a priori pas moindres que celles d'aujourd’hui[25],[26], les auteurs ont conclu sur cette base que les émissions actuelles de méthane géologique (environ 52 Tg/an, soit 52 Mt)[27],[28] sont surestimées, et donc que les estimations actuelles d'émissions anthropiques de méthane[28] ont, elles, été sous-estimées[24].
Cette étude a aussi confirmé les données antérieures[29],[30],[31] montrant que l’augmentation rapide d’environ 50 % de la fraction molaire de méthane atmosphérique lors de l’événement préboréal-Dryas était en très grande partie due à des sources telles que les zones humides et secondairement (moins de 19 %) aux anciens réservoirs de carbone que sont les clathrates marins[32], pergélisol[33] et le méthane emprisonné sous la glace[34].
Les deux principales voies de production de méthane géologique sont organique (génération thermique ou thermogénique) et inorganique (abiotique)[35]. Le méthane thermogénique se produit par fragmentation de la matière organique à des températures et des pressions élevées dans les couches sédimentaires profondes. La majeure partie du méthane présent dans les bassins sédimentaires est de ce type ; par conséquent, le méthane thermogénique est la source la plus importante de gaz naturel. Les composants du méthane thermogénique sont généralement considérés comme des reliques d'une époque antérieure. En général, le méthane thermogénique, en profondeur, peut se produire par fragmentation de la matière organique ou par synthèse organique. Les deux voies peuvent impliquer des micro-organismes (méthanogénèse), mais peuvent également être inorganiques.[pas clair] Les processus impliqués peuvent également consommer du méthane, avec ou sans micro-organismes.
La source la plus importante de méthane en profondeur (substrat rocheux cristallin) est abiotique. C'est-à-dire que le méthane est créé à partir de composés inorganiques, sans activité biologique, soit par des processus magmatiques, soit par des réactions eau-roche qui se produisent à basses température et pression, comme la serpentinisation[36],[37] En 2011, l'émission de méthane abiotique dans l'atmosphère à partir de la serpentinisation à basse température dans les roches ophiolitiques n'était documentée que dans quatre pays, les Philippines, Oman, la Nouvelle-Zélande et la Turquie[38].
Le méthane est l'hydrocarbure naturel le plus présent dans l'air. C'est le principal constituant du biogaz issu de la fermentation de matières organiques animales ou végétales en l'absence de dioxygène. Une quantité importante de méthane est aussi produite en milieu aérobie[39][réf. non conforme].
C'est le produit final de la décomposition anoxique de la matière organique par des archées méthanogènes ne vivant qu'en milieu anaérobie (sans oxygène)[40].
Il est naturellement produit par voie enzymatique, lors du métabolisme énergétique anaérobie des archées[41], dans les zones humides peu oxygénées comme les marais, tourbières et certains estuaires et lagunes, ainsi que dans certains sols cultivés (plutôt tropicaux, sans grandes différences entre système labouré, en semis direct ou en travail superficiel)[42] et/ou longuement inondés (mais dans ces milieux peuvent également se trouver des organismes méthanotrophes qui en consomment une partie ou la totalité)[43]. Les sols en semis direct absorbent cependant en moyenne 0,4 kg C-CH4 par hectare et par an de plus qu'en cas de labours[42].
Le CH4 se forme aussi dans le rumen et le tube digestif de nombreux animaux (de certains invertébrés jusqu'aux mammifères, herbivores principalement). Il est présent en faible quantité dans les gaz intestinaux humains[44].
C'est le seul hydrocarbure classique pouvant être obtenu rapidement et facilement via un processus biologique naturel. Loin derrière le gaz naturel (méthane fossile), le méthane renouvelable (biogaz) est néanmoins en plein développement (Suède, Allemagne, Danemark, Viêt Nam, Cambodge, Chine, Inde, etc.) (voir section #Utilisation).
Depuis les années 2000, les biologistes découvrent ou confirment que des végétaux[45],[46], des champignons[47], des algues[48] et les cyanobactéries (terrestres et aquatiques)[49] peuvent aussi produire du méthane, de même qu'en présence d'oxygène[50], via des voies de production et des exigences biologiques longtemps incomprises, mais en quantité importante[51] : les estimations varient entre 10 et 60 millions de tonnes de méthane émises par an, pour les seules feuilles des plantes, pour un total compris entre 60 et 240 millions de tonnes par an, soit 10 à 30 % des émissions annuelles globales. Ce gaz non bactérien provient aux deux tiers des régions tropicales. Ces émissions par la végétation, ajoutées à celles des marécages et peut-être à celles des fonds marins, seraient un des moteurs du changement climatique historique.
En 2022, trois chercheurs russes (Bruskov, Masalimov et Chernikov) montrent que Bacillus subtilis et Escherichia coli produisent du méthane quand elles sont en présence de fer libre et d'espèces réactives de l'oxygène (ROS), issues du métabolisme et renforcés par le stress oxydant)[52]. Les ROS produisent des radicaux méthyle, eux-mêmes issus de composés organiques contenant des groupes méthyle liés au soufre ou à l'azote. Ces radicaux méthyle sont alors l'intermédiaire nécessaire à l'apparition du méthane dans les cellules (phénomène aussi maintenant connu chez beaucoup d'autres organismes des domaines Bacteria, Archaea et Eukarya et dans plusieurs lignées cellulaires animales (y compris humaines), chez lesquels le stress oxydatif semble toujours augmenter cette production de méthane. Les auteurs supposent même que « toutes les cellules vivantes possèdent probablement un mécanisme commun de formation de CH4 exploitant les interactions entre les ROS, les donneurs de fer et de méthyle » (ce qui ouvre des pistes nouvelles pour l'étude du cycle biochimiques du méthane, du fer[53] et peut être l'amélioration de la production de biogaz).
Ce phénomène étant plus important en zone tropicale chaude et l'augmentation de la température de l'eau augmentant la production des ROS[54], on peut craindre que ce méthane puisse aussi contribuer aux boucles de rétroaction positive contribuant à accélérer le réchauffement climatique.
Le méthane produit par la réaction de serpentinisation entre les péridotites et l'eau de mer dans les dorsales océaniques peut rester piégé sous forme d'hydrates de méthane (clathrates) ou s'échapper dans l'atmosphère.
Des quantités importantes de méthane sont stockées sous forme d'hydrates de méthane au fond des océans (où leur exploitation est envisagée) et dans les pergélisols. Ces deux réservoirs pourraient jouer un rôle important dans les cycles climatiques et, selon des observations d'une équipe d'océanographes en 2014, ils commencent à perdre une quantité croissante de méthane dans l'atmosphère[55],[56].
Le débullage de méthane à partir des sédiments marins, sur les lignes de fractures du plancher océanique, est considéré comme un indice de risque sismique élevé, voire comme un possible précurseur des tremblements de terre (sous réserve de confirmation à la suite des expériences en cours, en mer de Marmara, sur la faille nord-anatolienne au large de la Turquie)[57].
Un documentaire intitulé Méthane, rêve ou cauchemar sur Arte (2014 fait état de la découverte que le méthane issu des planchers océaniques, à une profondeur minimale de 400 m, est presque totalement absorbé par des bactéries avant d'atteindre une remontée de 200 m)[58]. L'accident de la plateforme de Deepwater Horizon, survenu dans le golfe du Mexique, a libéré une très grande quantité de méthane sur le plancher océanique dont aucune trace ne subsistait après six mois, un temps considéré comme très court au regard de la quantité de méthane s'étant échappé du puits d'extraction endommagé. Le fait que le méthane ait été absorbé par des micro-organismes n'implique pas pour autant que l'incident n'ait pas de conséquence pour l'environnement, en particulier à cause de l'acidification de l'océan qui en résulte.
Dans les conditions normales de température et de pression, le méthane est un gaz incolore et inodore. Environ deux fois plus léger que l'air, il est explosif en milieu confiné (grisou). En milieu non confiné il se dilue dans l'air et s'échappe vers la haute atmosphère, où il a moins tendance à former des nuages explosifs que les gaz plus lourds que l'air (propane, butane) ; par contre c'est un puissant gaz à effet de serre.
La solubilité du méthane dans l'eau dépend beaucoup de la température et de la pression (elle diminue avec l'une et augmente avec l'autre). Ainsi le grisou minier peut être en partie solubilisé et transporté par de l'eau (qui contient alors aussi du radon ainsi que du dioxyde de carbone et du dioxyde de soufre qui l'acidifient). Selon l'Ineris une eau à 10 °C initialement saturée en gaz de mine sous une pression de 10 bars (équivalente à 100 m de charge hydraulique), va perdre lors de sa détente environ 0,5 m3 de méthane et 12 m3 de CO2 par mètre cube d'eau[59].
Les hydrates de méthane immergés fondent en libérant des chapelets de bulles, mais sans variation brusque[50]. De même, les micropoches de méthane produites par les bactéries du sédiment se libèrent en formant des bulles qui remontent dans la colonne d'eau, notamment dans la tourbe (où le phénomène est difficile à suivre[60]) et les vases estuariennes[61], et plus ou moins vite selon la teneur en matière organique[62] et la porosité/viscosité du substrat[63],[64]. Ce bullage représente dans les zones humides une fraction importante et probablement sous-estimée des émissions de méthane et de gaz à effet de serre[65]. Des chambres à flux automatisées fonctionnant en continu ont été combinées à un spectroscope pour mieux quantifier ces bulles et leur teneur en CH4[66].
À titre d'exemple, dans un milieu pauvre de zone tempérée, en 2009, le bullage variait d’une heure à l’autre, avec un pic nocturne de libération (de 20 h 00 à 06 h 00, heure locale) bien que les flux stables (c’est-à-dire ceux avec une augmentation linéaire de la concentration de CH4 dans l’espace de tête de la chambre) ne présentaient pas de variabilité quotidienne. Les taux de bullage moyens saisonniers ont culminé à 843,5 ± 384,2 « événements » par mètre carré et par jour en été, avec en moyenne 0,19 mg de CH4 rejetée par « événement ».
Il est aussi démontré que la flore des marais (y compris salée) influe sur la quantité de méthane saisonnièrement libérée dans l'air ou l'eau (avec par exemple Carex rostrata[67]. Les dates et l'importance des inondations ou des sécheresses jouent aussi[68].
Le méthane est un combustible qui compose jusqu'à 90 % le gaz naturel. Son point d'auto-inflammation dans l'air est de 540 °C[69]. La réaction de combustion du méthane s'écrit :
La combustion du méthane à 25 °C libère une énergie de 36,41 MJ/m3 (55,53 MJ/kg)[alpha 1], soit 10,11 kWh/m3 (15,42 kWh/kg)[alpha 2].
Le gaz naturel (constitué à plus de 90 % de méthane) est transporté par navires (méthaniers) à une température de −162 °C et à une pression voisine de la pression atmosphérique. Les réservoirs sont construits sur le principe de la bouteille isotherme et leur capacité peut aller jusqu'à 200 000 m3 de gaz liquide par réservoir. Un méthanier comportant plusieurs réservoirs, sa cargaison peut actuellement[Quand ?] atteindre 154 000 m3 de gaz naturel liquéfié (GNL). Les futurs méthaniers pourront transporter jusqu'à 260 000 m3 de GNL. Le volume du méthane à l'état gazeux est égal à 600 fois son volume à l'état liquide, à pression atmosphérique.
Présent à tous les stades de l'industrie pétrolière, mais mal valorisé, il est fréquemment brûlé en torchère, ce qui contribue à l'effet de serre (les pétroliers restreignent donc ce procédé).
Du méthane a été retrouvé à l'état de traces dans plusieurs nuages interstellaires.
Le méthane est présent partout sur Titan, et même à l'état liquide sous forme de lacs, de rivières, et de mers, particulièrement près du pôle nord de l'astre. Sa présence en a été établie dès 1944. Au point que la chaleur dégagée par la sonde Huygens, lors de l'impact du a provoqué un notable dégagement de méthane gazeux.
L'atmosphère de Titan, satellite de Saturne, est principalement constituée d'azote avec une proportion de méthane allant de 1,4 % dans la stratosphère jusqu'à 4,9 % au niveau du sol. Il ne pleuvait pas lorsque la sonde Huygens s'est posée sur Titan, mais l'ESA n'exclut pas que des averses de méthane y soient fréquentes. Simplement, l'aridité du sol absorberait rapidement ces précipitations, à la manière des déserts terrestres.
L'un des résultats les plus étonnants de la sonde spatiale Mars Reconnaissance Orbiter, en orbite autour de Mars depuis le , provient de l'étude détaillée en 2008 de la région de Nili Fossae, identifiée début 2009 comme source d'importants dégagements de méthane[70]. Ce gaz a été détecté dès 2003 dans l'atmosphère de Mars, aussi bien par des sondes telles que Mars Express que depuis la Terre ; ces émissions de CH4 se concentreraient notamment en trois zones particulières de la région de Syrtis Major Planum[71]. Or le méthane est instable dans l'atmosphère martienne, des études récentes suggérant même qu'il soit six cents fois moins stable qu'estimé initialement (on évaluait sa durée de vie moyenne à 300 ans) car le taux de méthane n'a pas le temps de s'uniformiser dans l'atmosphère et demeure concentré autour de ses zones d'émission, ce qui correspondrait à une durée de vie de quelques centaines de jours ; la source de méthane correspondante serait par ailleurs 600 fois plus puissante qu'estimé initialement, émettant ce gaz une soixantaine de jours par année martienne, à la fin de l'été de l'hémisphère nord[72].
Les analyses géologiques menées en 2008 par la sonde Mars Reconnaissance Orbiter dans la région de Nili Fossae ont révélé la présence d'argiles ferromagnésiennes (smectites), d'olivine (silicate ferromagnésien (Mg,Fe)2SiO4, détectée dès 2003[74]) et de magnésite (carbonate de magnésium MgCO3)[75], ainsi que de serpentine[76]. La présence simultanée de ces minéraux permet d'expliquer assez simplement la formation de méthane, car, sur Terre, du méthane CH4 se forme en présence de carbonates — tels que le MgCO3 détecté dans la région en 2008 — et d'eau liquide lors du métamorphisme hydrothermal d'oxyde de fer(III) Fe2O3 ou d'olivine (Mg,Fe)2SiO4 en serpentine (Mg,Fe)3Si2O5(OH)4, particulièrement lorsque le taux de magnésium dans l'olivine n'est pas trop élevé et lorsque la pression partielle de dioxyde de carbone CO2 est insuffisante pour conduire à la formation de talc Mg3Si4O10(OH)2 mais aboutit au contraire à la formation de serpentine et de magnétite Fe3O4, comme dans la réaction :
La probabilité de ce type de réactions dans la région de Nili Fossae est renforcée par la nature volcanique de Syrtis Major Planum et par l'étroite corrélation, observée dès 2004, entre le taux d'humidité d'une région et la concentration de méthane dans l'atmosphère[77].
Le méthane détecté par Curiosity lors d'une trentaine d'analyses de l’atmosphère n'est présent qu'à l'état de traces (0,4 ppb, à comparer aux 1 800 ppb de la Terre), mais sa fluctuation saisonnière (passage de 0,3 à 0,7 ppb) intrigue, car elle est trois fois plus importantes que ce que prévoient les théories disponibles[78]. Elle pourrait éventuellement être l'indice d’une présence de vie microbienne (actuelle ou fossile) et/ou résulter d'une ou plusieurs source(s) abiotique(s) : réaction d'eaux chaudes avec des olivines (évoquées plus haut), attaque par des UV solaires de météoroïdes et poussières stellaires riches en carbone minéral (car deux pics saisonniers se sont produits environ 15 jours après une pluie de météores martiens), désorption à partir d’une roche dont les pores ou feuillets s’ouvrent en été quand il fait plus chaud ; ou peut être ne s’agit il que d’une augmentation relative (ce serait le CO2 qui gelant en hiver aux pôles diminuerait dans l'atmosphère en donnant l’impression qu’il y a plus de méthane à ce moment, mais le phénomène devrait alors être plus marqué en plein hiver martien, à moins que des courants aériens n’apporte en fin d’été ce méthane jusqu’à l’emplacement de Curiosity)… Le débat est en cours[78].
On trouve également du méthane sous forme de nuages et de brume sur Uranus et Neptune[alpha 3], de gaz non condensé dans les atmosphères de Jupiter et de Saturne ; ainsi que peut-être sur les exoplanètes Epsilon Eridani c et Fomalhaut b.
Les gisements fossiles de gaz naturel comportent entre 50 et 60 % de méthane, le gaz naturel brut est épuré avant d'être injecté sur le réseau de distribution.
La proportion de méthane présent dans le gaz naturel que nous utilisons est supérieure à 90 % dans la plupart des gaz.
Le méthane « biologique » ou biogénique, ou biogaz, qui est produit par la fermentation anaérobie de matière organique comporte 50 à 80 % de méthane, (60-65 % généralement)
Le biogaz produit dans les décharges pourrait être (bien davantage) récupéré et valorisé sous forme d'électricité, de chaleur ou comme carburant automobile. Pour l'instant, seules quelques expériences isolées (dans des fermes, des déchetteries…) ont vu le jour, spécialement dans les régions les plus froides (nord de l'Allemagne, de la France, Scandinavie, etc.). Ainsi, une installation à plus grande échelle a été créée par l'Institut des sciences et des technologies de Kigali (en) dans les prisons rwandaises, confrontées à une surpopulation : les déjections des détenus sont converties en méthane, qui est valorisé en éclairage et chaleur, utilisée dans la moitié des brûleurs des cuisines[80].
Le méthane est valorisable comme combustible mais d'autres usages en seraient possibles. Par exemple, des chercheurs ont réussi à transformer à température presque ambiante (40 °C) du méthane en un ester (propanoate d'éthyle) potentiellement valorisable. Pour ce faire, un carbène (composé très réactif) a été introduit dans une liaison du méthane via un catalyseur organométallique[81].
Pour produire un méthane de décharge assez pur et pour faire un bon biocarburant de troisième génération, un « digesteur anaérobie » inspiré de la digestion anaérobie à l'œuvre dans la panse des bovins est expérimenté au Canada. Des microorganismes méthanogènes vivant en symbiose avec les vaches savent produire plus de méthane que de CO2, mais ils ont des besoins précis, en température et humidité notamment. La difficulté est de conserver les conditions de vies optimales de ces organismes dans un milieu constitué de déchets, ce qui est expérimenté au moyen d'électrodes régulant la température du milieu. Ce sont ensuite des fibres creuses constituées d'une membrane perméable qui devraient séparer le CO2 du méthane, lequel pourra ensuite être brûlé comme source d'énergie, utilisé par la carbochimie ou compressé et stocké[82].
Il est aussi possible de produire du méthane à partir du CO2 aérien par électrométhanogénèse, c'est-à-dire à l'aide d'un courant électrique grâce à une biocathode ou de façon abiotique[83].
Dans la perspective d'une transition vers des énergies renouvelables, des chercheurs de l'entreprise autrichienne Solar Fuel Technology (Salzbourg), en coopération avec l'Institut Fraunhofer de recherche sur l'énergie éolienne de Leipzig (IWES), le Centre de recherche sur l'énergie solaire et l'hydrogène de Stuttgart (ZSW) et l'université de Linz ont mis au point une solution de stockage de l'énergie sous forme de méthane[84],[85]. L'énergie électrique excédentaire d'origine éolienne ou photovoltaïque est utilisée pour décomposer de l'eau en dihydrogène et dioxygène (électrolyse de l'eau), puis le dihydrogène est combiné avec du dioxyde de carbone par une réaction de méthanation (réaction de Sabatier).
L'un des principaux intérêts de ce procédé est d'utiliser les infrastructures (réservoirs et conduites de gaz) existantes, dont la capacité de stockage serait suffisante pour couvrir les besoins de méthane de l'Allemagne pendant plusieurs mois, par exemple pendant[86] une période où le solaire et l'éolien ne peuvent couvrir les besoins énergétiques.
Le méthane est un gaz à effet de serre qui contribue au réchauffement climatique, pris en compte en tant que tel par la directive 2003/87/CE. Il absorbe une partie du rayonnement infrarouge émis par la Terre, et l'empêche ainsi de s'échapper vers l'espace.
De plus, il contribue aussi indirectement à l'effet de serre, en diminuant la capacité de l'atmosphère à oxyder d'autres gaz à effet de serre (comme les fréons). Son utilisation comme combustible émet du dioxyde de carbone CO2 à hauteur de 380 Mt/an (les émissions industrielles[Lesquelles ?] avoisinent 6 000 Mt/an)[réf. nécessaire].
L'influence du méthane sur le climat est moins importante que celle du CO2, mais est tout de même préoccupante[87]. L'un des principaux enseignements du cinquième rapport d'évaluation du Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC) en 2014 est que l'influence du méthane a longtemps été sous-estimée, son potentiel de réchauffement global (PRG) à cent ans passant de 21 dans le cadre du protocole de Kyoto, à 28 et même 34 en prenant en compte les rétroactions climatiques[88].
Le méthane persiste moins de dix ans dans l'atmosphère, où il est détruit par des radicaux hydroxyle OH•, mais c'est un gaz à effet de serre bien plus puissant que le CO2, responsable, au niveau actuel de sa concentration, de quelques pour cent de l'effet de serre total à l'œuvre dans notre atmosphère[89]. Ainsi, à titre comparatif, sur un horizon de 100 ans, relâcher une certaine quantité de méthane dans l'atmosphère a un effet sur le réchauffement climatique environ neuf fois plus important que brûler cette même quantité de méthane en CO2[90].
Le méthane est le deuxième gaz responsable du dérèglement climatique[91] (forçage radiatif de 0,97 W/m2 en 2011) derrière le CO2 (1,68 W/m2), mais loin devant les fréons (0,18 W/m2) et le protoxyde d'azote[92] (0,17 W/m2).
Une molécule de méthane absorbe en moyenne 28 fois plus de rayonnement qu'une molécule de dioxyde de carbone sur une période de 100 ans, son PRG est donc de 28 ; à échéance de 20 ans, son PRG est même de 72[93]. Selon le GIEC (2014), Bien que qu'il soit plus rare dans l’atmosphère que le CO2, il absorbe plus efficacement le rayonnement infrarouge thermique que ce dernier, faisant que son potentiel de réchauffement global (PRG) est ∼86 fois plus fort par unité de masse que celui du CO2 sur une échelle de temps de 20 ans, et 28 fois plus puissante sur une échelle de temps de 100 ans (GIEC, 2014)[94].
En 2016, Etminan et al. précisent que depuis 1750, il est responsable de presque un quart des forçages radiatifs cumulés pour le CO2CH4, et N2O (protoxyde d’azote) combiné[95]. Et en décembre, plus de 80 scientifiques du monde entier[alpha 4] publient une étude alertant sur la sous-estimation usuelle de la contribution du méthane au réchauffement : il contribue pour 20 % au réchauffement en cours (contre 70 % pour le CO2), parce que, malgré sa concentration beaucoup plus faible, son potentiel de réchauffement global (PRG) est 28 fois plus élevé. Pour rester sous la barre des +2 °C en 2100, on ne peut donc se contenter de limiter les émissions de dioxyde de carbone ; il faut aussi réduire celles de méthane[96].
En 2019, l'Agence américaine d'observation océanique et atmosphérique (NOAA) annonce que les concentrations atmosphériques de méthane ont atteint un record en 2018[97].
En 2020, deux études importantes sont publiées :
Le méthane interagit avec l'ozone, différemment dans les hautes et les basses couches de l'atmosphère.
Selon les modélisations tridimensionnelles disponibles en chimie de la troposphère, diminuer les émissions anthropiques de CH4 pourrait être « un puissant levier pour réduire à la fois le réchauffement climatique et la pollution de l'air par l'ozone de fond troposphérique »[100].
Les émissions de méthane provenant des marais, des bovins, des feux de végétation, ou des combustibles fossiles ont toutes une signature isotopique spécifique[101]. Les bactéries méthanogènes des zones humides absorbent plus d'isotopes plus légers du carbone (12C) alors que le méthane fossile est plutôt enrichi en carbone plus lourd (13C). Le méthane issu des incendies de brousse ou de forêt est situé entre les deux[102].
On sait aussi aujourd’hui finement analyser le méthane piégé dans les glaces, ce qui a par exemple permis en 2012 de confirmer l'hypothèse posée il y a quelques années par le climatologue William Ruddiman, qui estimait que l'impact de l'humanité sur le climat date d'avant le récent « Anthropocène » et de bien avant la révolution industrielle. Selon l'étude isotopique du méthane des glaces antarctiques parue dans la revue Nature en octobre 2012[103], les variations passées du taux de méthane et sa composition démontrent que des feux de végétation probablement anthropiques enrichissent depuis le XVIe siècle au moins le taux atmosphérique de méthane. L'analyse fine de deux carottes de glace du forage glaciaire NEEM1 (Groenland)[104] couvrant environ 2 000 ans a été faite avec une précision jamais atteinte en termes de dosage, analyse et résolution temporelle. Elle montre ou confirme qu'entre un siècle av. J.-C. et le XIXe siècle, le monde avait déjà connu trois périodes d'augmentation des taux de méthane (à l'échelle de quelques siècles) et une tendance longue à la décroissance de la signature isotopique 13C du méthane[103]. Selon ces données, les modèles d'équilibre isotopique de l'atmosphère[105] et les données paléoclimatiques de cette période (température, précipitations) ainsi qu'au vu des données de la démographie humaine, les feux de végétation liés à la déforestation, au chauffage, à la cuisson et la métallurgie avaient diminué au moment du déclin de l'Empire romain et de celui de la dynastie Han (Chine), pour réaugmenter durant les grandes déforestations et l'expansion médiévale[103]. L'Homme semble être responsable de 20 à 30 % des émissions totales de méthane par les feux de végétation entre un siècle av. J.-C. et le XVIe siècle[103].
Le taux de méthane dans l'atmosphère terrestre atteignait 1 644 ppb en 1984[106]. Il a augmenté graduellement jusqu'à atteindre 1 748 ppb (Partie par milliard) en 1998[107]. Après une période de stabilisation de 1999 à 2006 à environ 1 774 ppb, la croissance de sa concentration a repris en 2007 à un rythme de 5 à 15 ppb par an, atteignant 1 879 ppb en 2020[106] et 1 931 ppb en [108]. Des analyses isotopiques suggèrent que cet accroissement récent du méthane atmosphérique serait principalement d'origine non-fossile[109].
Le taux est en 2018 entre 1 850 et 1 900 ppb, soit 0,000 19 % ou 1,9 ppm. Il s'est maintenu[110],[111] entre 1 780 et 1 810 ppb de 2000 à 2010 avec une grande variation suivant la latitude[112]. Dans le passé, le taux de méthane dans l'atmosphère a varié souvent parallèlement à la température[réf. nécessaire]. Ce taux a augmenté d'environ 150 % depuis 1750 et atteint aujourd'hui un taux inégalé[113] dans l'histoire, principalement en raison des activités humaines. Une augmentation des teneurs a été constatée en 2008-2009[114]. Les modélisations informatiques du taux du CH4 dans l'air ont permis de remonter à la source des émissions pour les vingt dernières années de mesures atmosphériques. Selon ces travaux, la réduction des émissions et/ou une utilisation plus efficace du gaz naturel dans l'hémisphère Nord (amélioration de l'étanchéité des tuyaux de gaz, récupération du grisou ou du gaz de décharge pour produire de l'électricité, etc.) ont permis une baisse des émissions dans les années 1990, mais une nette augmentation des émissions provenant de combustibles fossiles dans le nord de l'Asie a ensuite de nouveau été constatée (2006…). Le recul des zones humides, par drainage entre autres, et, dans une moindre mesure, les feux de brousse, expliquent aussi les variations mesurées du CH4 atmosphérique sur vingt ans[115].
Le méthane serait responsable d'environ 20 % du réchauffement moyen enregistré depuis le début de la révolution industrielle.
On estime que sans sa présence, la température moyenne de surface de la Terre serait plus basse de 1,3 °C[réf. nécessaire]. Le calcul du potentiel de réchauffement global (PRG) du méthane est périodiquement réévalué par le GIEC au vu des connaissances nouvelles.
Ce PRG tend à augmenter[116], il y a doublement du forçage radiatif additionnel qui lui est attribué entre 2007 et 2013, ce qui le rapproche du CO2 (il est passé de 0,48 à 0,97 W/m2 tous effets confondus et le forçage radiatif du CO2 est 1,68 W), les scientifiques montrant qu'il contribue plus que ce que l'on pensait au réchauffement, avec une source nouvelle et en augmentation forte aux États-Unis qui sont les fuites de méthane des forages et installations de gaz de schiste ou gaz de couche ou encore les émissions du pergélisol[117]. D’après le cinquième rapport du GIEC, paru en 2013, le PRG relatif du méthane est estimé à 28.
L'augmentation régulière de la concentration du méthane dans l'atmosphère pourrait aussi être en partie liée à une diminution de la teneur de l'atmosphère en radical hydroxyle (le destructeur naturel du méthane dans l'air)[118].
Globalement, les émissions de méthane vers l’atmosphère sont estimées entre 500 et 900 Mt/an, dont environ 60 % sont d’origine anthropique[121],[119].
Les principales sources sont, par ordre décroissant d'importance quantitative, estimées comme suit[119] :
Un réseau de mesures et d'analyse se met en place au niveau mondial, à l'initiative de différents groupes comme Climate TRACE et Carbon Mapper, parfois à l'aide d'intelligence artificielle, exploitant des images satellites accessibles aux scientifiques. Ce réseau devrait permettre d'identifier les émissions afin de les réduire[160].
La mission d'observation de la Terre EMIT de la NASA, lancée dans l'espace en juillet 2022, a identifié une cinquantaine de sites « super-émetteurs » dégageant d'importantes quantités de méthane. Au Turkménistan, l'instrument a identifié douze panaches issus d'une infrastructure gazière et pétrolière à l'est de la ville portuaire de Hazar ; certains de ces panaches s'étendent sur plus de 32 kilomètres. Dans l'État américain du Nouveau-Mexique, un autre panache long d'environ 3,3 kilomètres a été détecté au niveau de l'un des plus grands champs pétrolifères du monde. En Iran, au sud de Téhéran, un panache d'au moins 4,8 kilomètres a été observé, issu d'un complexe de traitement des déchets. D'autres émetteurs ont été identifiés en Asie centrale, au Moyen-Orient et dans le sud-ouest des États-Unis[161].
L'Environmental Defense Fund a envoyé en mars 2024 un satellite de mesure des émissions du méthane, nommé MethaneSat[162].
Les variations futures de ces émissions sont incertaines, mais on prévoit une augmentation de consommation des sources fossiles, marines et agricoles, des déchets, du fait de la démographie mondiale, de l’industrialisation de certains pays et de la demande croissante en énergie, ainsi que du réchauffement climatique.
Le taux atmosphérique mondial de méthane s'était stabilisé puis est reparti à la hausse (+3 % environ de 2007 à 2015)[163]) outre l’augmentation des sources déjà connues[164], cette hausse pourrait aussi être due à une baisse du taux atmosphérique d'hydroxyle, une molécule qui « joue le rôle de détergent atmosphérique », notamment vis-à-vis du méthane qu'elle dégrade[163]. Des inondations tropicales accrues et un effet du réchauffement sont peut-être aussi en cause. Comme la fonte de la glace de mer arctique, ceci est un nouveau signal d'une perturbation écologique et climatique du système Terre[163].
Remarque : certaines archées méthanotrophes (qui consomment le méthane) sont à l'origine de puits naturels de méthane (par exemple dans les forêts anciennes[165]).), mais leur rôle écosystémique et leurs usages potentiels sont encore mal évalués.
Ils sont encore mal cernés, mais la contribution du méthane à certains réseaux trophiques, et certains mécanismes de dégradation du méthane dans l'eau ou l'air pourraient avoir été sous-estimés.
On sait aujourd’hui que :
L'évolution de la concentration de l'air en méthane semble marquer le pas[170] (2007) ; cela pourrait s'expliquer par une destruction accélérée de molécules d'ozone O3, catalysée par des radicaux NO• en plus grande quantité[171],[172].
La réduction des émissions de méthane, comparée à celle du dioxyde de carbone, peut se révéler plus économique et plus efficace dans l'atténuation du changement climatique, étant donné son fort potentiel de réchauffement global et son temps de séjour dans l'atmosphère relativement court, de neuf ans[173].
Divers moyens permettent de réduire les émissions de méthane pour diminuer son action sur l'effet de serre :
La Commission européenne présente le 14 octobre 2020 sa stratégie de réduction des émissions de méthane : création d'un observatoire international afin d'améliorer la mesure et le partage d'informations, renforcement de la surveillance via la galaxie satellitaire Copernicus, directive prévue en 2021 pour imposer aux industriels des énergies fossiles de mieux détecter et réparer les fuites de méthane et interdire les pratiques de torchage et de dégazage systématiques, extension du champ d'application de la directive relative aux émissions industrielles aux secteurs émetteurs de méthane non encore couverts, demande aux États membres d'un effort de traitement des mines de charbon abandonnés, pression sur les pays partenaires commerciaux pour réduire l'impact méthane de l'énergie importée, incitations à réduire les émissions dans l'agriculture par l'innovation en matière d'alimentation animale et de gestion d'élevage, renforcement de la collecte des déchets et résidus agricoles non recyclables qui peuvent servir à produire du biogaz et des biomatériaux, amélioration de la gestion du gaz de décharge[177].
Le 15 décembre 2021, la Commission européenne présente son projet détaillé pour la réduction des émissions de méthane du secteur de la production d'énergie, qu'elle espère réduire de 80 % en 2030 par rapport à 2020 : les industriels du gaz, du charbon et du pétrole devront effectuer des mesures régulières à la source de leurs fuites de méthane, avec vérification par des experts indépendants. Les industriels auront ensuite, selon la nature des problèmes identifiés, de 5 à 15 jours pour y remédier. Afin de lutter contre les « émissions importées » de méthane, elle imposera aux importateurs d'énergie fossile la transparence sur le niveau d'émissions de méthane de leurs fournisseurs et les efforts de ces derniers pour les réduire, puis, à compter de 2025, elle durcira les règles sur les importations d'énergie fossile issue de producteurs aux efforts jugés insuffisants[178].
Le 2 novembre 2021, lors de la COP26, à l'appel des États-Unis et de l'Union européenne, plus de 80 pays s'engagent à réduire d'ici à 2030 d'au moins 30 % les émissions de méthane. Selon l'ONU, tenir ce nouvel objectif pourrait éviter 0,3 °C de réchauffement d'ici aux années 2040. L'administration américaine a dévoilé auparavant une série de nouvelles réglementations destinées à faire la chasse au méthane dans l'industrie pétrolière et gazière aux États-Unis, susceptibles de réduire de 41 millions de tonnes ses émissions de 2023 à 2035, selon l'Agence américaine de protection de l'environnement. Cependant, certains des plus grands émetteurs de méthane issu des mines de charbon n'ont pas signé l'accord, en particulier la Chine, la Russie et l'Inde, qui représentent un tiers des émissions[179].
Selon l'Agence internationale de l'énergie (AIE), les émissions de méthane dues à la production du pétrole, du gaz et du charbon atteignent 120 millions de tonnes, en légère augmentation par rapport à 2022, alors qu'il faudrait les réduire de 75 % d'ici à 2030 pour tenir les engagements de l'Accord de Paris sur le climat. Les deux tiers des émissions de méthane sont produites par une dizaine de pays, en particulier la Chine, qui est le premier émetteur de méthane issu du charbon, les États-Unis et la Russie, principaux émetteurs dans le secteur pétrogazier. Le Turkménistan, le Venezuela et le Kazakhstan figurent aussi parmi les plus gros émetteurs. A la COP28, une cinquantaine de pétroliers et de gaziers se sont engagés à réduire massivement leurs émissions de méthane d'ici à 2030, et plus de 150 pays ont rejoint l'initiative « Global Methane Pledge », qui vise à réduire de 30 % les émissions entre 2020 et 2030[180].
Des chercheurs du laboratoire d’électrochimie moléculaire de l'université Paris-Diderot ont montré que la conversion photochimique de CO2 en méthane à température ambiante et par un catalyseur sélectif, abondant, non polluant, non toxique et peu coûteux[Lequel ?], associé à la lumière solaire était possible, ce qui ouvre de nouvelles perspectives qui, à long terme, peuvent espérer aboutir à des applications industrielles[181]. Elle pourrait alors — en principe — réduire les effets de la consommation de combustibles fossiles et aider à diminuer les émissions de CO2[182],[183].
Jusqu’ici, les principales voies explorées pour l’élimination physicochimique du CO2 industriel étaient principalement électrochimiques. Pour être « soutenables », elles nécessitent une production renouvelable et propre d’électricité[184] mais des approches photochimiques activées par la lumière du soleil sont également envisageables[185],[186]. Parmi les photocatalyseurs et les électrocatalyseurs moléculaires inventoriés, seuls quelques-uns semblent à la fois stables et sélectifs pour la réduction du CO2. Mais la plupart de ces catalyseurs produisent surtout du monoxyde de carbone (CO, toxique) ou de l’acide formique (HCOOH)[181]. Les catalyseurs pouvant dans certaines conditions générer avec un rendement faible à modéré des hydrocarbures semblent encore plus rares[187],[188],[189],[190],[191],[192],[193],[194].
Un complexe électrocatalytique moléculaire s’était déjà montré comme le plus efficace et le plus sélectif pour convertir le CO2 en CO ; il s’agit de la tétraphénylporphyrine de fer fonctionnalisée par des groupes triméthylammonium[195],[196],[197]. On a montré en 2017 que sous irradiation ultraviolette il peut aussi catalyser la réduction de CO2 en méthane à température et pression ambiantes. Utilisé dans une solution d'acétonitrile contenant un photosensibilisateur et un donneur d'électrons sacrificiel, ce catalyseur fonctionne avec régularité durant quelques jours, en produisant principalement du CO (par photoréduction du CO2) mais Heng Rao et ses collègues ont constaté qu’une exposition du CO2 à ce produit conduite en deux stades permet d'abord de réduire le CO2 en CO puis de synthétiser du méthane (avec une sélectivité atteignant jusqu'à 82 % et un « rendement quantique » (efficacité légère) de 0,18 %).
On est encore très loin d’un prototype industriel, mais les auteurs estiment que cette expérience pourrait être un prélude à d’autres découvertes de catalyseurs moléculaires qui rendraient possible une production lente mais douce d'un combustible gazeux à partir de CO2 et des ultraviolets de la lumière solaire[181].
Le méthane est considéré comme une source d'énergie intéressante et durable s'il n'est pas d'origine fossile mais renouvelable et soutenable dans sa fabrication. Comme l'humanité émet trop de dioxyde de carbone CO2 dans l'air, un système de conversion directe de CO2 en CH4 est activement recherchée pour à la fois protéger le climat et stocker une énergie renouvelable. Des solutions sans catalyseur rare, cher ou toxique sont recherchées.
Les chercheurs peuvent pour cela s'inspirer du vivant (biomimétique) car du méthane pur est depuis des milliards d'années efficacement et abondamment produit par quelques espèces microbiennes dites « méthanogènes », dans l'eau ou dans l'appareil digestif d'autres organismes.
Une clé semble être la méthyl-coenzyme M réductase, l'enzyme de la biogenèse du méthane (qui permet aussi l'utilisation du méthane comme source d'énergie (par oxydation anaérobie)[198]). Cette enzyme a un facteur auxiliaire dit « coenzyme F430 », un tétrapyrrole modifié contenant du nickel qui favorise la catalyse à travers un intermédiaire méthyle radical/Ni(II)-thiolate intermédiaire. On ignore encore comment la coenzyme F430 est synthétisée (à partir d'une composé commun, le uroporphyrinogène III), mais on sait que sa synthèse implique une chélation, une amidation, une réduction d'anneau macrocyclique, une lactamisation et la formation d'anneau carbocyclique[198].
Les protéines catalysant la biosynthèse de la coenzyme F430 (à partir de sirohydrochlorine, appelée CfbA-CfbE) ont été récemment identifiées, permettant d'envisager des systèmes recombinants basés sur ces groupes métalloprothétiques[198]. Cette meilleure compréhension de la biosynthèse d'un coenzyme de la production de méthane par les microbes complète les voies biosynthétiques connues pour une famille des composés importants incluant la chlorophylle, l'hème et la vitamine B12[199],[198]. Dans la nature, la plupart du méthane est produit dans un milieu aqueux, ce qui peut inspirer des solutions techniques immergées[200], mais la plupart des sources massives de CO2 anthropique sont gazeuses.
Une première méthode de conversion de CO2 en CH4 (pilotée/catalysée par la lumière et utilisant une hème, c'est-à-dire une porphyrine contenant du fer) a été proposé en 2018 par deux chercheurs allemands (Steinlechner et Junge) du Leibniz Institut für Katalyse (de) de l'Université de Rostock[201] et d'autres chercheurs travaillent sur des complexes métalliques ou organométalliques utiles[202] et sur les moyens de doper ce type de réaction chimique[203],[204].
Le méthane a probablement depuis longtemps des effets sur la biodiversité et inversement, notamment via le climat qu'il peut modifier[205] ou via les communautés microbiennes formant le microbiote intestinal des animaux.
Une hypothèse est que certains groupes d'invertébrés (métazoaires dont le métabolisme et le cycle de reproduction peuvent alors augmenter) ont par le passé bénéficié de phases de réchauffement marin ; l'explosion cambrienne (« Big Bang de l'évolution ») pourrait avoir été liée à des alternances assez rapprochées de phases intenses de puits (clathrates) et d'émissions de méthane bionique, liées à des déplacements tectoniques de plaques (migration vers les pôles puis l'équateur). Ces migrations (True Polar Wander (en) ou TPW) auraient eu des conséquences tectoniques, biogéochimiques et donc climato-écologiques, notamment via des changements de la circulation thermohaline océanique, conséquences intimement reliées entre elles ; l'aspect stochastique de ces évènements aurait au Cambrien dopé la radiation évolutive des métazoaires. Selon Kirschvink et Raub en 2003, une « mèche au méthane » aurait pu mettre l'étincelle de cette explosion cambrienne[206]. Remarque : au Cambrien le soleil était un peu plus petit et moins chaud qu'aujourd'hui. Lors du dernier grand réchauffement (maximum thermique du passage Paléocène-Éocène), il y a 56 millions d'années, les ancêtres des mammifères sont apparus, mais de nombreux autres groupes se sont éteints.
Si le méthane est aujourd'hui essentiellement associé à des milieux anoxiques pauvres en espèce, on y trouve aussi quelques espèces méthanotrophes qui en dépendent. On a par exemple récemment identifié :
Sa mesure en laboratoire est bien maitrisée, mais on cherche à développer des moyens de mesures plus légers, rapides, faciles à utiliser et moins coûteux, pour mesurer les faibles doses de méthane discrètement émises dans les eaux douces, salées, estuariennes, l'air, les sols & sédiments ou lors de certains phénomènes (évents marins, fonte de pergélisols, geysers, fuites de gaz, dont de gaz de schiste, etc.)[209].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.