Remove ads
De Wikipédia, l'encyclopédie libre
En mathématiques, les espaces vectoriels topologiques sont une des structures de base de l'analyse fonctionnelle. Ce sont des espaces munis d'une structure topologique associée à une structure d'espace vectoriel, avec des relations de compatibilité entre les deux structures.
Les exemples les plus simples d'espaces vectoriels topologiques sont les espaces vectoriels normés, parmi lesquels figurent les espaces de Banach, en particulier les espaces de Hilbert.
Un espace vectoriel topologique (« e.v.t. ») est un espace vectoriel E sur un corps topologique K (généralement R ou C munis de leur topologie habituelle) muni d'une topologie compatible avec la structure d'espace vectoriel, c’est-à-dire vérifiant les conditions suivantes :
La catégorie des espaces vectoriels topologiques sur un corps topologique K est notée TVSK ou TVectK où les objets sont les K-espaces vectoriels topologiques et les morphismes sont les applications K-linéaires continues.
Soit F un sous espace vectoriel d'un e.v.t. E, l'espace vectoriel quotient hérite d'une topologie quotient : soit φ la projection canonique de E sur E/F, par définition la topologie induite sur le quotient E/F est la plus fine qui rende φ continue. Les ouverts sont toutes les parties de E/F dont l'image réciproque par φ est ouverte.
Dans toute cette section, le corps topologique K est un « corps valué » (au sens : muni d'une valeur absolue) non discret (par exemple K = R ou C), et E est un e.v.t. sur K.
Une partie U de E est dite absorbante si :
Par continuité en 0 de l'application de K dans E : λ ↦ λv, on a :
Proposition — Tout voisinage de l'origine est absorbant.
La réciproque est clairement fausse, même en dimension finie. Cependant, pour tout convexe fermé absorbant de E, l'ensemble est un tonneau, donc un voisinage de 0 si E est un espace tonnelé, par définition. Or tout espace de Banach ou, plus généralement, de Fréchet, ou limite inductive d'espaces de Fréchet, est tonnelé. Ainsi :
Dans un espace de Fréchet ou une limite inductive d'espaces de Fréchet, tout convexe fermé absorbant est un voisinage de l'origine[1].
On peut se passer de l'hypothèse « fermé » en dimension finie, puisqu'alors, tout convexe non vide a même intérieur relatif que son adhérence.
Une partie U de E est dite symétrique si :
Une partie U de E est dite équilibrée (ou cerclée) si :
Le noyau équilibré N d'une partie A de E est la réunion des parties équilibrées de E incluses dans A. C'est un ensemble équilibré car toute réunion d'ensembles équilibrés est équilibrée. Le noyau de A est donc le plus grand ensemble équilibré inclus dans A.
Ce noyau N est non vide si et seulement si A contient le vecteur nul. Dans ce cas, N contient lui aussi le vecteur nul.
Proposition — Soient N le noyau équilibré d'une partie A de E, et v un vecteur de E. Pour que v appartienne à N, il faut et il suffit que pour tout scalaire λ vérifiant |λ| ≤ 1 on ait λv ∈ A.
En effet, v appartient à N si et seulement si, parmi les parties équilibrées contenant v, au moins l'une d'entre elles est incluse dans A, ou encore si la plus petite d'entre elles, {λv ; |λ| ≤ 1}, est incluse dans A.
Proposition — Le noyau équilibré de tout voisinage de 0 est un voisinage de 0. Plus précisément, tout ouvert contenant le vecteur nul contient un ouvert équilibré contenant le vecteur nul.
En effet, soit un ouvert contenant le vecteur nul. La multiplication externe étant continue, donc continue au point , il existe un réel et un ouvert W contenant le vecteur nul tels que :
L'ensemble , défini comme suit, est alors un ouvert équilibré inclus dans :
De plus cette réunion est non vide (et contient 0) car K est non discret.
Suivant l'application qu'on en fait, on utilise généralement des contraintes supplémentaires sur la structure topologique de l'espace. Ci-dessous se trouvent quelques types particuliers d'espaces topologiques, à peu près classés selon leur « gentillesse ».
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.