Suprajohde tarkoittaa sellaista ainetta, jonka resistiivisyys katoaa kun lämpötila laskee aineelle ominaisen kriittisen lämpötilan alapuolelle. Tällöin havaitaan Meissnerin ilmiö. Siten suprajohteessa sähkövirta etenee häviöttömästi ja ulkoinen magneettivuo ei pysty tunkeutumaan materiaaliin. Sähkövirran tiheys ja magneettivuon tiheys eivät saa ylittää materiaalille ominaista arvoa tai suprajohtavuus katoaa.
Suprajohtavuuden löysi hollantilainen Heike Kamerlingh Onnes vuonna 1911 tutkiessaan nesteheliumilla jäähdytetyn elohopean sähkönjohtavuutta. Kokeessa elohopean ominaisvastus katosi äkisti 4,2 K:n lämpötilassa.
Usein esitetyn hypoteesin mukaan kaikki metalliset alkuaineet muuttuvat joko ferromagneettisiksi tai suprajohteiksi kun lämpötilaa viedään kohti absoluuttista nollapistettä eli kohti 0 K:n lämpötilaa eli −273,15 °C:a. Näin on havaittu useimpien alkuaineiden kohdalla – kummankaanlaista järjestynyttä olomuotoa ei vielä ole löydetty esimerkiksi kuparista.
Suprajohteet voidaan jakaa tyypin I ja tyypin II suprajohteisiin. Tyypin I suprajohteet, jotka yleensä ovat puhtaita alkuaineita, menettävät magneettivuon tiheyden kasvaessa suprajohtavuutensa yhtäkkiä, yleensä jo melko heikossa magneettikentässä, tyypin II suprajohteet, jotka ovat seoksia, sitä vastoin vähitellen.[1] Metalliseoksilla myös lämpötila, jonka alapuolella ne ovat suprajohtavia, on usein korkeampi kuin niissä esiintyvillä puhtailla alkuaineilla.
Meissnerin ilmiö
- Pääartikkeli: Meissnerin ilmiö
Aineessa, jonka sähkönjohtavuus on rajaton, ei voi olla sähkökenttää, muutoin sähkövirta kasvaisi äärettömän suureksi. Samasta syystä siellä ei voi olla myöskään ajallisesti muuttuvaa magneettikenttää, sillä se indusoisi sinne sähkökentän. Jos suprajohdekappale kuitenkin sijoitetaan ulkoiseen magneettikenttään, kenttä ei tunkeudu kappaleen sisään ennen kuin se kasvaa niin suureksi, että suprajohtavuus häviää. Tällöin kappale magnetoituu. Aikoinaan oletettiin, että jos ulkoista magneettikenttää tämän jälkeen jälleen heikennetään, kunnes kappale tulee jälleen suprajohtavaksi, se myös jäisi pysyvästi magneettiseksi. Vuonna 1933 Meissner ja Ochsenfeld kuitenkin osoittivat kokeellisesti, että näin ei tapahdu, vaan suprajohtavassa kappaleessa magneettikenttä palautuu tämän jälkeenkin nollaksi. Suprajohteet ovat siis täydellisiä diamagneetteja. Tätä ilmiötä sanotaan Meissnerin ilmiöksi.[2]
Magneetti hylkii diamagneettisia aineita, yleensä tosin niin heikosti, että ilmiö on vaikea havaita. Suprajohteiden diamagneettisuus on kuitenkin niin voimakasta, että ilmiö aiheuttaa suprajohtavuuden demonstroinnissa usein esitetyn magneetin leijumisen suprajohteen yläpuolella.
Jos suprajohdekappale kuitenkin on renkaan muotoinen, siinä voi olla staattinen magneettikenttä. Se on kuitenkin kvantittunut niin, että sen magneettivuo renkaan poikkipinnan yli on jokin lausekkeen h/2e monikerta, missä h on Planckin vakio ja e alkeisvaraus.[3]
Kvanttiteoreettinen selitys
- Pääartikkeli: BCS-teoria
Suprajohtavuus voidaan selittää kvanttimekaniikan avulla. Vuonna 1957 Bardeen, Cooper ja Schrieffer keksivät teorian, joka selittää niin kutsuttujen perinteisten suprajohteiden toimintaperiaatteen. Tämän BCS-teorian mukaan suprajohtavuus johtuu siitä, että kiteessä elektroni vetää puoleensa lähellä olevia positiivisia ioneja, jotka taas vuorostaan vetävät puoleensa toisia lähellä olevia elektroneja. Täten vaikka elektronien välillä vallitseekin sähköinen poistovoima, positiivisten ionien välityksellä ne kuitenkin sitoutuvat toisiinsa määräetäisyydelle muodostaen Cooperin pareja, jotka monessa suhteessa käyttäytyvät kuin yksi hiukkanen niin kauan, kuin kytkentä säilyy. Koska lisäksi Cooperin parissa olevien elektronien yhteenlaskettu spin on kokonaisluku, ne käyttäytyvät bosonien tavoin, minkä vuoksi useammallakin Cooperin parilla voi olla sama aaltofunktio. Elektronien välisen kytkennän purkaminen vaatii energiaa. Tavallissa lämpötiloissa tämä energia saadaan kiteen lämpövärähtelyistä, mutta hyvin alhaisissa lämpötiloissa energiaa ei ole tähän riittävästi. Koska Cooperin pari ei hajoa, elektroni ei voi törmätä mihinkään, minkä vuoksi aineessa ei myöskään ole resistanssia.
Josephsonin ilmiö
- Pääartikkeli: Josephsonin ilmiö
Vuonna 1962 Brian Josephson laati teorian, jonka mukaan kahden suprajohteen välissä olevan ohuen eristekerroksen läpi voi kulkea sähkövirta suprajohtavasti. Tähän Josephsonin ilmiöön perustuu myöhemmin kehitetty hyvin heikkojen magneettikenttien mittauksiin soveltuva SQUID-laite (engl. Superconducting Quantum Interference Device).
Suprajohtavia seoksia
Yleisin perinteinen suprajohde niobium-titaani (NbTi) löydettiin vuonna 1962 Westinghouse-yhtiössä. Sen muokattavuus mahdollisti johtimien valmistamisen ja sitä kautta vahvojen sähkömagneettien tuottamisen. NbTi:n kriittinen lämpötila on 11 K, joten se luetaan matalan lämpötilan suprajohteisiin. Muita nykyään yleisesti käytettäviä perinteisiä suprajohteita ovat Nb pinnoitteisiin ja Nb3Sn erittäin voimakkaan magneettikentän sovelluksiin.
Korkean lämpötilan suprajohteet
Joulukuussa 1985 löydettiin ensimmäinen korkean lämpötilan suprajohde, Ba-La-Cu-O alkuaineiden yhdiste. Sen kriittinen lämpötila on 35 K.[4] Korkean lämpötilan suprajohteiden toimintaa ei osattu varmuudella selittää BCS-teorialla. Ensimmäisestä keraamisesta korkean lämpötilan suprajohteesta kehitettiin edelleen toinen keraaminen suprajohde, nimeltään YBCO (yttrium-barium-kuparioksidi, YBa2Cu3O7), jonka kriittinen lämpötila on 92 K. Suhteellisen korkea kriittinen lämpötila mahdollistaa aineen käytön suprajohteena nestetypellä jäähdytettynä. Nestetyppi on huomattavan paljon helpompaa käsitellä ja halvempaa kuin esimerkiksi nestemäinen helium, jolla päästään erittäin mataliin lämpötiloihin. Toisaalta viime vuosina lämpöpumppuun perustuvat kryojäähdyttimet ovat muutenkin helpottaneet jäähdytystä.
Magnesiumdiboridin kriittinen lämpötila on 39 K. Sen etuna moniin muihin suprajohteisiin verrattuna on halpa hinta ja metallisena se on helposti muokattava ja siitä voidaan valmistaa pitkiäkin kaapeleita edullisemmin kuin muista suprajohtavista materiaaleista.
Vuoteen 2007 mennessä korkein saavutettu kriittinen lämpötila on 133 K, johon päästiin vuonna 1994 Hg0.8Pb0.2Ba2Ca2Cu3Ox-yhdisteellä. Samana vuonna päästiin myös transitiolämpötilaan 164 K, mutta se oli 30 GPa:n paineessa. [5]
Suprajohtavat sähkömagneetit
Käytännöllinen maksimi magneettikenttä, johon NbTi-magneeteilla päästään on 8 teslaa.[6] NbSn-magneeteilla ennätys on 16,1 teslaa.[6] Esteenä NbSn:n käytön yleistymiselle on materiaalin hankala työstettävyys. Suprajohtavan muodon saavuttamiseksi se täytyy lämpökäsitellä 650 °C:ssa, jonka jälkeen siitä tulee hyvin hauras.[6]
Muita suprajohteita
Rikkivety saadaan suprajohtavaksi noin −70 °C:n lämpötilassa mutta siihen vaaditaan yli 1,5 miljoonaa kertaa ilmakehän paine.[7]
Sovellukset
Ylivoimainen enemmistö kaupallisista ja tieteellisistä sovelluksista hyödyntää suprajohteita voimakkaan magneettikentän aikaansaamiseen. Suprajohteeseen perustuva sähkömagneetti on niissä tapauksissa usein vastaavaa kestomagneettia kevyempi, vaikka otetaan huomioon jäähdytyslaitteisto. On selvää, ettei sellaisissa sovelluksissa voida käyttää materiaaleja, jotka menettävät suprajohtavuutensa voimakkaassa magneettikentässä.
Lääketieteellinen magneettiresonanssikuvaus (MRI) on 1980-luvun jälkeen ollut kaupallisesti ylivoimaisesti suurin käyttökohde. Ydinmagneettiseen resonanssiin (NMR) perustuvilla laitteilla puolestaan analysoidaan useimmiten kemiallisten yhdisteiden koostumusta ja rakennetta, joskin myös kvanttitietokoneessa voi hyödyntää samaa ilmiötä. Myös joissain levitaatiojunissa käytetään suprajohteita. Edelleen teollisten sovellusten puolella mineraalien puhdistuksessa voidaan käyttää voimakkaita magneetteja.
Muista kuin magneetteihin liittyvistä sovelluksista mainittakoon vikavirtarajoittimet. Ne perustuvat suprajohtavuuden häviämiseen virran ylitettyä tietyn, materiaalille ominaisen arvon.
Tieteellisemmistä sovelluksista ajankohtaisimpia on CERNin suurenergiafysiikan tutkimuksessa käytettävä hadronitörmäytin (LHC). Suprajohteita hyödynnetään sekä kiihdytettävien hiukkasten ohjailuun käytettävissä noin 8 000 magneetissa että detektoreissa olevissa magneeteissa.
Tulevaisuuden suuri suprajohteita käyttävä hanke on kansainvälinen fuusioreaktori ITER. Fuusiossa käytettävän plasman koossa pitämiseen tarvitaan voimakkaita magneetteja. Suprajohtavia johtimia osin jopa 26 metriä halkaisijaltaan oleviin keloihin tarvitaan yhteensä 700 tonnia.
Uusien suprajohteiden kehittely on aikaavievää. Huoneenlämmössä toimiva suprajohde olisi tieteellinen läpimurto.
Suprajohtavat alkuaineet
Alla olevassa taulukossa punaisella merkityt alkuaineet tulevat suprajohtaviksi niiden kemiallisen merkin alle merkityssä lämpötilassa.[8]
Ryhmä → | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||
(I | II | III | IV | V | VI | VII | VIII) | |||||||||||||
↓ Jakso | ||||||||||||||||||||
1 | 1 H |
2 He | ||||||||||||||||||
2 | 3 Li[9] 0,4 mK |
4 Be 0,0 K |
5 B] |
6 C |
7 N |
8 O |
9 F |
10 Ne | ||||||||||||
3 | 11 Na |
12 Mg |
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar | ||||||||||||
4 | 19 K |
20 Ca |
21 Sc |
22 Ti 0,4 K |
23 V 5,4 K |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn 0,9 K |
31 Ga 1,1 K |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr | ||
5 | 37 Rb |
38 Sr |
39 Y |
40 Zr 0,6 K |
41 Nb 9,3 K |
42 Mo 0,9 K |
43 Tc 7,8 K |
44 Ru 0,5 K |
45 Rh 0,0 K |
46 Pd |
47 Ag |
48 Cd 0,5 K |
49 In 3,4 K |
50 Sn 3,7 K |
51 Sb |
52 Te |
53 I |
54 Xe | ||
6 | 55 Cs |
56 Ba |
* |
72 Hf 0,1 K |
73 Ta 4,5 K |
74 W 0,0 K |
75 Re 1,7 K |
76 Os 0,4 K |
77 Ir 0,1 K |
78 Pt |
79 Au |
80 Hg 4,2 K |
81 Tl 3,4 K |
82 Pb 7,2 K |
83 Bi |
84 Po |
85 At |
86 Rn | ||
7 | 87 Fr |
88 Ra |
** |
104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Nh |
114 Fl |
115 Mc |
116 Lv |
117 Ts |
118 Og | ||
* Lantanoidit | 57 La 6,0 K |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd 7,1 K |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb |
71 Lu | |||||
** Aktinoidit | 89 Ac |
90 Th[10] 1,368 K |
91 Pa[10] 1,4 K |
92 U[10] 0,68 K |
93 Np |
94 Pu |
95 Am[10] 0,625 K |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
103 Lr |
Alkalimetallit | Maa-alkalimetallit | Lantanoidit | Aktinoidit | Siirtymäalkuaineet |
Muut metallit | Puolimetallit | Muut epämetallit | Halogeenit | Jalokaasut |
Katso myös
Lähteet
Aiheesta muualla
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.