Liukumoduuli eli liukukerroin (engl. shear modulus[1], tunnus G, joskus S tai μ) on materiaalifysiikassa suure, joka kuvaa materiaalin kykyä vastustaa leikkausjännityksen aiheuttamaa muodonmuutosta. Materiaalin liukumoduuli määritellään siitä koostuvaan kappaleeseen kohdistuvan leikkausjännityksen suhteena sen aiheuttamaan venymään.[2]

Thumb
Leikkausjännitys

missä

= liukujännitys
on vaikuttava voima
on pinta-ala, johon voima kohdistuu
= liukuvenymä. Insinöörialoilla , muutoin
poikittainen siirtymä
on alkupeärinen pituus[3]

SI-järjestelmässä liukumoduulin yksikkö on sama kuin paineen, pascal (Pa), mutta suuruusluokkansa vuoksi se ilmoitetaan yleensä gigapascaleina (GPa) tai Yhdysvalloissa usein paunoina neliötuumaa kohti. Sen dimensio on M1L−1T−2, missä voima on korvattu massan ja kiihtyvyyden tulolla.

Merkitys

Lisätietoja Materiaali, Liukumoduulinen tyypillinen arvo (GPa) (huoneenlämmössä) ...
Materiaali Liukumoduulinen tyypillinen arvo (GPa)
(huoneenlämmössä)
Timantti[4] 478,0
Volframi[5] 158
Rakenneteräs 75
Rauta[5] 80
Platina[5] 61
Kupari[5] 45
Titaani[5] 41
Pii[5] 34
Kalustelasi[5] 16..35
Kvartsilasi[5] 31
Germanium[6]
Kulta[5] 27
Alumiini[5] 26
Pleksilasi[5] 1,2
Polyetyleeni[7] 0.117
Kumi[8] 0.0006
Sulje

Liukumoduuli on yksi materiaalin jäykkyyttä kuvaavista suureista. Ne kaikki perustuvat yleistettyyn Hooken lakiin:

  • Youngin moduuli E kuvaa materiaalin venymistä sitä venyttävän voiman tai puristumista sitä puristavan voiman suunnassa, esimerkiksi vedettäessä lankaa sen kummastakin päästä tai asetettaessa paino pylvään päälle,
  • Poissonin suhde ν on pitkittäisessä ja poikittaisessa suunnassa tapahtuvien läpimitan muutosten suhde (venytettävä lanka ohenee ja puristuva pylväs paksunee)
  • Puristusmoduuli K kuvaa sitä, miten kappale reagoi siihen kaikista suunnista kohdistuvaan hydrostaattiseen paineeseen, esimerkiksi veden alla meressä tai syvässä altaassa
  • Liukumoduuli G kuvaa sitä, miten kappale reagoi leikkausjännitykseen, esimerkiksi leikattaessa sitä tylsillä saksilla.

Nämä moduulit eivät ole toisistaan riippumattomia, vaan isotrooppisilla aineilla niiden välillä vallitsevat yhteydet:[9]

ja
eli

Liukumoduuli siis kuvaa sitä, miten kappaleen muoto muuttuu, kun siihen kohdistuu sen pinnan suuntainen voima samalla kun sen vastakkaiseen pintaan kohdistuu liikettä vastustava voima, esimerkiksi kitka. Jos kappale on suorakulmaisen särmiön muotoinen, se muuttuu tällaisen voiman vaikutuksesta suuntaissärmiöksi. Tämä muodonmuutos on sitä suurempi, mitä pienempi on materiaalin liukumoduuli. Anistrooppisisten materiaalien kuten puun ja paperin sekä myös yksittäisten kiteiden ominaisuudet eivät ole kaikissa suunnissa samat, ja niinpä mainitunlaisen voiman aikaansaaman muodonmuutoksen suuruuskin riippuu siitä, mihin pintaan voima kohdistuu. Tällaisiin materiaaleihin voidaan soveltaa Hooken lain yleistettyä muotoa, jossa liukumoduuli ja muut kimmoisuuskertoimet eivät enää ole yhdellä luvulla esitettäviä skalaarisuureita vaan ne korvataan materiaalin ominaisuuksia eri suunnissa kuvaavilla tensoreilla.

Fluidi voitaisiin määritellä aineeksi, jonka liukumoduuli on nolla.

Leikkausaallot

Homogeenisissa ja isotrooppisissa kiinteissä aineissa esiintyy kahdenalaisia aaltoja, pitkittäisiä paineaaltoja ja poikittaisia leikkausaaltoja. Poikittaisen aallon nopeus, riippuu materiaalin liukumoduulista,

missä

G on materiaalin liukumoduuli ja
sen tiheys.[9]

Metallien liukumoduulit

Thumb
Kuparin liukumoduuli lämpötilan funktiona. Kokeelliset mittaustulokset[10][11] esitetty värillisillä merkeillä.

Useimpien metallien liukumoduuli on suuruudeltaan noin 0,4 kertaa metallin kimmomoduuli.[12] Metallien liukumoduulien on havaittu yleensä pienenevän lämpötilan kohotessa. Suuren paineen alaisena liukumoduuli näyttää lisäksi kasvavan paineen kasvavansa. Eri metallien liukumoduulien on lisäksi havaittu korreloivan niiden sulamispisteiden ja vakanssinmuodostusenergioiden kanssa.[13]

On kehitetty useita malleja, joilla voidaan ennustaa metallien ja mahdollisesti metalliseostenkin liukumoduulit ja niiden riippuvuus lämpötilasta ja paineesta. Sellaisia ovat esimerkiksi:

  1. MTS-liukumoduulimalli, jonka kehitti Y. Varshni vuonna 1970[14] ja jota käytetään yhdessä plastisia virtauksia koskevan mekaanisen kynnysjännitysmallin (engl. Mechanical Threshold Stress, MTS) kanssa.[15][16]
  2. Steinbergin-Cochranin-Guinanin (SCG) liukumoduulimalli[17], jota käytetään yhdessä Steinbergin-Cochranin-Guinanin-Lundin virtajännitysmallin kanssa.
  3. Nadalin ja LePoacin (NP) liukumoduulimalli[11], joka käyttää Frederick Lindmannin teoriaa liukumoduulin lämpötilariippuvuuden ja CSG-mallia sen paineriippuvuuden määrittämiseksi.

MTS-malli

MTS-liukumoduulimallin mukaan materiaalin liukumoduuli lämpötilassa T on

missä on sen liukumoduuli absoluutisessa nollapisteessä (), ja ja ovat kullekin materiaalille ominaisia vakioita.

SCG-malli

Steinbergin-Cocranin-Guinanin (SCG) mallin mukaan materiaalin liukumoduuli riippuu myös paineesta ja on

missä, μ0 on sen liukumoduuli 300 kelvinin lämpötilassa paineen ollessa nolla ja kun sen tiheys on normaalin suuruinen eli η = 1.

NP-malli

Nadalin-LE Poacin (NP) liukumoduulimalli on kehitetty SCG-mallista. SCG-mallissa käytetty liukumoduulin empiirinen lämpötilariippuvuus on korvattu yhtälöllä, joka perustuu Lindemannin sulamisteoriaan. NP-mallin mukaan materiaalin liukumoduuli on:

missä

missä μ0 on liukumoduuli absoluuttisessa nollapisteessä ja valitussa paineessa, ζ on materiaalista riippuva parametri, m atomimassa ja f Lindemannin vakio.

Liukurelaksaatiomoduuli

Liukurelaksaatiomoduuli on liukumoduulin ajasta riippuva yleistys[18]:

.

Katso myös

Lähteet

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.