From Wikipedia, the free encyclopedia
Dimensioanalyysi on luonnontieteissä käytetty menetelmä, jolla selitetään eri fysikaalisten suureiden välisiä suhteita.[1] Fysikaalisia tapahtumia kuvaamaan johdettujen yhtälöiden järkevyyttä voidaan testata dimensioanalyysin keinoin, ja sijoittamalla yhtälöön yksiköt selviää ratkaistavan suureen yksikkö. Dimensioanalyysin keksi Joseph Fourier.[2]
Fysikaalisten suureiden dimensioita voidaan kuvata suuretta vastaavalla isoilla kirjaimilla:[3]
Yllä olevien suureita kuvaavien dimensioiden yhdistelmillä voidaan ilmaista ns. johdannaisdimensioita, esimerkiksi nopeuden dimensio on pituus jaettuna ajalla: .
Jos kyseessä on suure, jolla ei ole fysikaalista yksikköä, se on ns. dimensioton suure. Tällaisen suureen dimensio merkitään numeerisella arvolla: luvulla 1.[4] Esimerkiksi kulmaa ilmaiseva radiaani on dimensioton suure.
Fysiikan yhtälöt ovat suureyhtälöitä, joissa esiintyvillä suureilla yleensä on jokin dimensio, joskin ne voivat olla myös dimensiottomia. Suureyhtälön molempien puolten on oltava samaa dimensiota. Suureita voidaan laskea yhteen vain, jos ne ovat samaa dimensiota.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.