Solar eclipse of May 30, 1946

20th-century partial solar eclipse From Wikipedia, the free encyclopedia

Solar eclipse of May 30, 1946

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, May 30, 1946,[1] with a magnitude of 0.8865. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Quick Facts Gamma, Magnitude ...
Solar eclipse of May 30, 1946
Partial eclipse
Thumb
Map
Gamma−1.0711
Magnitude0.8865
Maximum eclipse
Coordinates64.1°S 101°W / -64.1; -101
Times (UTC)
Greatest eclipse21:00:24
References
Saros117 (65 of 71)
Catalog # (SE5000)9390
Close

This was the second of four partial solar eclipses in 1946, with the others occurring on January 3, June 29, and November 23.

A partial eclipse was visible for parts of eastern Oceania and western South America.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

More information Event, Time (UTC) ...
May 30, 1946 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1946 May 30 at 19:08:19.4 UTC
Equatorial Conjunction 1946 May 30 at 20:32:06.1 UTC
Ecliptic Conjunction 1946 May 30 at 20:49:47.0 UTC
Greatest Eclipse 1946 May 30 at 21:00:23.7 UTC
Last Penumbral External Contact 1946 May 30 at 22:52:40.4 UTC
Close
More information Parameter, Value ...
May 30, 1946 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.88652
Eclipse Obscuration 0.86992
Gamma −1.07105
Sun Right Ascension 04h28m24.9s
Sun Declination +21°46'41.4"
Sun Semi-Diameter 15'46.4"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 04h29m34.6s
Moon Declination +20°43'10.9"
Moon Semi-Diameter 16'43.0"
Moon Equatorial Horizontal Parallax 1°01'21.2"
ΔT 27.5 s
Close

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

More information May 30 Ascending node (new moon), June 14 Descending node (full moon) ...
Eclipse season of May–June 1946
May 30
Ascending node (new moon)
June 14
Descending node (full moon)
June 29
Ascending node (new moon)
ThumbThumbThumb
Partial solar eclipse
Solar Saros 117
Total lunar eclipse
Lunar Saros 129
Partial solar eclipse
Solar Saros 155
Close

Eclipses in 1946

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 117

Inex

Triad

Solar eclipses of 1946–1949

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on January 3, 1946 and June 29, 1946 occur in the previous lunar year eclipse set.

More information series sets from 1946 to 1949, Ascending node ...
Solar eclipse series sets from 1946 to 1949
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 May 30, 1946
Thumb
Partial
−1.0711 122 November 23, 1946
Thumb
Partial
1.105
127 May 20, 1947
Thumb
Total
−0.3528 132 November 12, 1947
Thumb
Annular
0.3743
137 May 9, 1948
Thumb
Annular
0.4133 142 November 1, 1948
Thumb
Total
−0.3517
147 April 28, 1949
Thumb
Partial
1.2068 152 October 21, 1949
Thumb
Partial
−1.027
Close

Saros 117

This eclipse is a part of Saros series 117, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 24, 792 AD. It contains annular eclipses from September 18, 936 AD through May 14, 1333; hybrid eclipses from May 25, 1351 through July 8, 1423; and total eclipses from July 18, 1441 through May 19, 1928. The series ends at member 71 as a partial eclipse on August 3, 2054. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 16 at 9 minutes, 26 seconds on December 3, 1062, and the longest duration of totality was produced by member 62 at 4 minutes, 19 seconds on April 26, 1892. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]

More information Series members 57–71 occur between 1801 and 2054: ...
Close

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

More information 22 eclipse events between January 5, 1935 and August 11, 2018, January 4–5 ...
22 eclipse events between January 5, 1935 and August 11, 2018
January 4–5 October 23–24 August 10–12 May 30–31 March 18–19
111 113 115 117 119
Thumb
January 5, 1935
Thumb
August 12, 1942
Thumb
May 30, 1946
Thumb
March 18, 1950
121 123 125 127 129
Thumb
January 5, 1954
Thumb
October 23, 1957
Thumb
August 11, 1961
Thumb
May 30, 1965
Thumb
March 18, 1969
131 133 135 137 139
Thumb
January 4, 1973
Thumb
October 23, 1976
Thumb
August 10, 1980
Thumb
May 30, 1984
Thumb
March 18, 1988
141 143 145 147 149
Thumb
January 4, 1992
Thumb
October 24, 1995
Thumb
August 11, 1999
Thumb
May 31, 2003
Thumb
March 19, 2007
151 153 155
Thumb
January 4, 2011
Thumb
October 23, 2014
Thumb
August 11, 2018
Close

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1837 and 2200 ...
Series members between 1837 and 2200
Thumb
April 5, 1837
(Saros 107)
Thumb
March 5, 1848
(Saros 108)
Thumb
February 3, 1859
(Saros 109)
Thumb
December 2, 1880
(Saros 111)
Thumb
August 31, 1913
(Saros 114)
Thumb
July 31, 1924
(Saros 115)
Thumb
June 30, 1935
(Saros 116)
Thumb
May 30, 1946
(Saros 117)
Thumb
April 30, 1957
(Saros 118)
Thumb
March 28, 1968
(Saros 119)
Thumb
February 26, 1979
(Saros 120)
Thumb
January 26, 1990
(Saros 121)
Thumb
December 25, 2000
(Saros 122)
Thumb
November 25, 2011
(Saros 123)
Thumb
October 25, 2022
(Saros 124)
Thumb
September 23, 2033
(Saros 125)
Thumb
August 23, 2044
(Saros 126)
Thumb
July 24, 2055
(Saros 127)
Thumb
June 22, 2066
(Saros 128)
Thumb
May 22, 2077
(Saros 129)
Thumb
April 21, 2088
(Saros 130)
Thumb
March 21, 2099
(Saros 131)
Thumb
February 18, 2110
(Saros 132)
Thumb
January 19, 2121
(Saros 133)
Thumb
December 19, 2131
(Saros 134)
Thumb
November 17, 2142
(Saros 135)
Thumb
October 17, 2153
(Saros 136)
Thumb
September 16, 2164
(Saros 137)
Thumb
August 16, 2175
(Saros 138)
Thumb
July 16, 2186
(Saros 139)
Thumb
June 15, 2197
(Saros 140)
Close

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2200 ...
Series members between 1801 and 2200
Thumb
September 8, 1801
(Saros 112)
Thumb
August 18, 1830
(Saros 113)
Thumb
July 29, 1859
(Saros 114)
Thumb
July 9, 1888
(Saros 115)
Thumb
June 19, 1917
(Saros 116)
Thumb
May 30, 1946
(Saros 117)
Thumb
May 11, 1975
(Saros 118)
Thumb
April 19, 2004
(Saros 119)
Thumb
March 30, 2033
(Saros 120)
Thumb
March 11, 2062
(Saros 121)
Thumb
February 18, 2091
(Saros 122)
Thumb
January 30, 2120
(Saros 123)
Thumb
January 9, 2149
(Saros 124)
Thumb
December 20, 2177
(Saros 125)
Close

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.