Loading AI tools
From Wikipedia, the free encyclopedia
This article consists of projects of the Defence Research and Development Organisation (DRDO).
The Defence Research and Development Organisation (DRDO) is responsible for the ongoing HAL Tejas programme. The LCA is intended to provide the Indian Air Force with a modern, fly by wire, multi-role fighter, as well as develop the aviation industry in India. The LCA programme has allowed DRDO to progress substantially in the fields of avionics, flight control systems, aircraft propulsion and composite structures, along with aircraft design and development.[1]
Defence Laboratory Jodhpur in collaboration with High Energy Materials Research Laboratory developed an improved chaff material and chaff cartridge-118/I for the Indian Air Force to protect Indian military aircraft from radar jamming and deception.[2]
Apart from the aforementioned upgrades, DRDO has also assisted Hindustan Aeronautics with its programmes. These include the HAL Dhruv helicopter and the HAL HJT-36. Over a hundred LRU (Line Replaceable Unit)'s in the HJT-36 have come directly from the LCA programme. Other duties have included assisting the Indian Air Force with indigenisation of spares and equipment. These include both mandatory as well as other items.
The DRDO has also developed two unmanned aerial vehicles – the Nishant tactical UAV and the Lakshya (Target)
Pilotless Target Aircraft (PTA).[3] The Lakshya PTA has been ordered by all three services for their gunnery target training requirements. Efforts are on to develop the PTA further, with an improved all digital flight control system, and a better turbojet engine.[4] The Nishant is a hydraulically launched short-ranged UAV for the tactical battle area. It is currently being evaluated by the Indian Navy and the Indian Paramilitary forces as well.
The DRDO is also going ahead with its plans to develop a new class of UAVs. These draw upon the experience gained via the Nishant programme, and will be substantially more capable. Referred to by the HALE (High Altitude Long Endurance) and MALE (Medium Altitude Long Endurance) designations. The MALE UAV has been tentatively named the Rustom,[5] and will feature canards and carry a range of payloads, including optronic, radar, laser designators and ESM. The UAV will have conventional landing and take off capability. The HALE UAV will have features such as SATCOM links, allowing it to be commanded beyond line of sight. Other tentative plans speak of converting the LCA into a UCAV (unmanned combat aerial vehicle), and weaponising UAVs.
Ghatak, previously known as Autonomous Unmanned Research Aircraft (AURA) is a stealthy unmanned combat air vehicle (UCAV) of flying-wing concept powered by dry Kaveri engine variant. It is designed and developed for the Indian Air Force (IAF) that will be capable of releasing missiles, bombs and precision-guided munitions from its internal weapons bay.
A precursor project under active development to test various technologies for DRDO Ghatak and future unmanned wingman bomber program.[6]
Electronics and Radar Development Establishment (LRDE) as part of anti-drone warfare developed D-4 which uses data fusion coming from multiple sensors for drone detection and is equipped with dual countermeasure techniques. D-4 has a 360° radar coverage for detecting micro drones within a range of 4 km, a radio frequency (RF) detector to check RF communications in 3 km range and an electro-optical and infrared (EO/IR) sensor for visual identification within 2 km range. The RF and EO/IR sensor works in tandem for confirmation and verification of the target. This activates the first stage of countermeasure through RF/GNSS jammer to counter the incoming communication signals. It is part of the soft-kill framework. For second stage of countermeasure, D-4 comes equipped with a laser of range 150 m to 1 km which goes for the hard-kill. D-4 already demonstrated its capabilities to National Security Guard (NSG) and Indian Air Force (IAF) in 2020–21. It was first deployed during 2020 and again on 2021 Republic Day around New Delhi.[7][8] For 15 August celebration in 2021, D-4 system was deployed as part of counter drone strategy around Red Fort.[9]
DRDO has already transferred the technology to Bharat Electronics Limited (BEL) for mass production and is now considering it for private sector industries.[8] On 31 August 2021, Indian Armed Forces signed deal with BEL to acquire static and road mobile D4S to enhance anti-drone capabilities.[10]
Due to constant threat of UAV attacks, Instruments Research and Development Establishment (IRDE) is working on a new electro-optical drone detection system. The project is independent of what other DRDO labs are doing in anti-drone warfare domain especially the recently launched D-4 from LRDE. The IRDE system will be able to detect 4 feet long UAV flying at about 300 kmph from a distance of 3 km and a drone having a size of about 1 foot and flying at about 70 kmph from a distance of 2 km. The system will integrate thermographic camera, high-resolution video cameras, laser illuminators and laser range finders to detect and track rogue drones through electromagnetic and radio emission, reflection of microwave, infrared and visible light.
Since standalone systems and conventional air defense measures are insufficient to engage smaller drones, DRDO is planning to strengthen and build a web of network which will include multiple newly developed systems connected with the national airspace surveillance radars acting in unison for detecting, identifying, tracking and deploying anti-drone countermeasures such as soft or hard kill in case of emergency.[11]
Aerial Delivery Research and Development Establishment (ADRDE) on 18 December 2021, successfully completed demonstration flight of controlled aerial delivery system from Antonov An-32 that can deliver 500 kg payload with an accuracy of less 100 m CEP within the targeted area using high performance Ram-air parachute. The system utilizes GPS and NavIC for satellite guidance, attitude and heading reference system and an onboard computing system that helps in autonomous trajectory correction using waypoint navigation. CADS-500 can be dropped from 7,600 m above mean sea level and can cover a distance of 30 km.[12][13]
DRDO has been responsible for the indigenisation of key defence stores and equipment. DRDO has assisted Hindustan Aeronautics Limited and the IAF with the indigenisation of spares and assemblies for several aircraft. DRDO laboratories have worked in coordination with academic institutes, the CSIR and even ISRO over projects required for the Indian Air Force and its sister services. DRDO's infrastructure is also utilised by other research organisations in India. In the first ever initiative of its kind, DRDO has provided its patented Copper-Titanium (CuTi) alloy technology for commercial exploitation to a start-up company. The agreement between DRDO and Pahwa Metal Tech Pvt Ltd was signed on the sidelines of the Start Up India event at Delhi.[14]
DRDO cooperates with the state-owned Ordnance Factories Board for producing its items. These have led to issues of marginal quality control for some items, and time-consuming rectification. Whilst these are common to the introduction of most new weapons systems, the OFB has had issues with maintaining the requisite schedule and quality of manufacture owing to their own structural problems and lack of modernisation. The DRDO has played a vital role in the development of this ability since the role of private organisations in the development of small arms and similar items has been limited. A significant point in case is the INSAS rifle which has been adopted by the Indian Army as its standard battle rifle and is in extensive service. There have been issues with rifle quality in use under extreme conditions in the heat, with the OFB stating that it will rectify these troubles with higher grade material and strengthening the unit. Prior troubles were also dealt with in a similar manner.[15] In the meantime, the rifle has found favour throughout the army and has been ordered in number by other paramilitary units and police forces.[16][17]
In recent years, India's booming economy has allowed the OFB to modernise with more state funding coming its way, to the tune of US$400 million invested during 2002–07.[18] The organisation hopes that this will allow it to modernise its infrastructure; it has also begun introducing new items, including a variant of the AK-47 rifles.[19]
The DRDO's various projects are:
Due to use of tungsten carbide armor-piercing bullet by banned terror groups like Jaish-e-Mohammed (JeM), Defence Materials and Stores Research and Development Establishment (DMSRDE) developed a new medium-sized light weight 9 kg bulletproof vest for the Indian Army in 2021 for counter insurgency operation with increasing protection level. The bulletproof vest conforms to Bureau of Indian Standards (BIS) and the Front Hard Armour Panel (FHAP) was validated by Terminal Ballistics Research Laboratory (TBRL).[20][21]
The lightest bulletproof vest designed to withstand 7.62×54mmR API (level 6 of BIS 17051) ammunition has been created by DMSRDE. It passed the BIS 17051-2018 standard testing at Terminal Ballistics Research Laboratory. One of the jacket's most notable features is the front Hard Armour Panel (HAP), which can survive multiple impacts (up to six shots) with 7.62 x 54 R API (Sniper rounds) in both ICW (in conjunction with) and standalone designs. Its monolithic ceramic plate front HAP, with polymer backing, is ergonomically designed. In addition to improving wearability and comfort during operations, this guarantees optimal protection. ICW hard armour panels (HAPs) and standalone HAPs have respective areal densities of less than 40 kg/m2 and 43 kg/m2.[22]
DRDO Industry Academia Centre of Excellence at IIT Delhi has developed two varieties of ABHED (Advanced Ballistics for High Energy Defeat) bulletproof jackets. They are lighter than the Army's maximum weight requirement and are able to mitigate the highest threat levels. Polymers and boron carbide were used to make these jackets. The design configuration is based on the characterization of several materials at high strain rates, followed by appropriate modelling and simulation. The protocols have been followed, and the armour plates for the jackets have successfully completed all development trials. Modular configurations and 360-degree protection with a 3,400 square centimeters total protection area are the standout features of these jackets. It is made up of rigid Hard Armour Panels, flexible Soft Armour Panels, and an ergonomic carrier for security personnel to hold both panels. The 8 kg BIS level 5 jackets offer defense against 7.62×51mm NATO rounds as well as armor-piercing and Mild Steel Core bullets. BIS level 6 jackets, weighing 9.3 kg, offer protection against sniper shots with less than 25 mm, as well as against 7.62×39mm.[23][24]
Defence Institute of Physiology and Allied Sciences (DIPAS) developed triple layer modular extreme weather waterproof clothing for the Indian Armed Forces weighing under 4.5 kg. The insulation can provide body protection up to minus 50 degree Celsius at 30,000 feet with around wind velocity of 60 km per hour preventing hypothermia and minimising the risks of frostbite.[25]
DRDO has developed an indigenous 84 mm calibre, 7 kg lightweight recoilless reusable ATGM launcher for the Indian army which will replace the 14 kg Carl Gustav Mark-II launcher. The DRDO has made extensive use of composites in its construction, resulting in the reduced weight.[29]
A compact, low-cost and handy explosive detection kit has been designed and perfected for field detection of traces of explosives. The kit yields a colour reaction, based on which explosives can be detected in minutes. It is used for identification of all common military, civil and home-made explosive compositions, and is being used by Police and BSF for the detection of explosives.
In what has been termed a "reverse technology transfer",[30] the Explosive Detection Kit widely used in India by bomb detection squads and the armed forces since 2002, would be manufactured and sold in the US. The kit uses reagents to detect various chemicals present in explosives.[31]
High Energy Materials Research Laboratory (HEMRL) of DRDO in collaboration with Indian Institute of Science (IISc), Bengaluru and Indian Institute of Science Education and Research, Bhopal (IISER-B)[32] have developed a new explosive detection device called RaIDer-X (Rapid Identification Detector of eXplosives) which was showcased on 1 March 2020 during National Workshop on Explosive Detection (NWED-2020). It can detect bulk of pure as well as contaminated explosives of 20 different kinds from a standoff distance of 2 metre by using Universal Multiple Angle Raman Spectroscopy (UMARS) technique.[33]
A new high explosive is in the making at a DRDO lab that could replace other standard explosives of the armed forces such as RDX, HMX, FOX-7 and Amorphous Boron. Scientists at the Pune-based High Energy Materials Research Laboratory (HEMRL) have already synthesized an adequate quantity of the new explosive CL-20, in their laboratory. The compound, 'Indian CL-20' or 'ICL-20', was indigenously developed in HEMRL using inverse technology. CL-20 is a Nitroamine class of explosive which is 20% more powerful than HMX which itself is more than potent RDX. CL-20-based shaped charges significantly improve the penetration of armour and could potentially be used in projectiles for the 120-mm Arjun tank main gun. The CL-20, due to its reduced sensitivity, enables easy handling and transportation which reduces the chances of mishap and loss of men, money, materials and machines.[34]
DRDO's ARDE also developed other critical systems, such as the Arjun Main Battle Tank's 120 mm rifled main gun and is presently engaged in the development of the armament for the Future IFV, the "Abhay". The DRDO is also a member of the trials teams for the T-72 upgrade and its fire control systems. Earlier on, the DRDO also upgraded the Vijayanta medium tank with new fire control computers.
ECM stations for both communication and non-com (radar etc.) systems. The Indian Army has ordered its Signal Corps to be a prime contributor in the design and development stage, along with the DRDO's DLRL. The scale of this venture is substantial – it comprises COMINT and Electronic intelligence stations which can monitor and jam different bands for both voice/data as well as radar transmissions. In contrast to other such systems, Samyukta is an integrated system, which can perform the most critical battlefield EW tasks in both COM and Non-COM roles. The system will be the first of its type in terms of its magnitude and capability in the Army. Its individual modules can also be operated independently.[44] A follow on system known as Sauhard is under development.
The DRDO has steadily increased its radar development. The result has been substantial progress in India's ability to design and manufacture high power radar systems with locally sourced components and systems. This began with the development of short-range 2D systems (Indra-1) and has now extended to high power 3D systems like LRTR intended for strategic purposes. Several other projects span the gamut of radar applications, from airborne surveillance (AEW&C) to firecontrol radars (land based and airborne). A list of the tactical programs is as follows:
More details on the DRDO's productions as well as production-ready radar systems is as follows:
Apart from the above, the DRDO has also several other radar systems currently under development or in trials, these include:
Other programmes in development for the Army include Corps level information and decision making software and tools, intended to link all units together for effective C3I. These systems are in production at DRDO's production partner, Bharat Electronics. These projects are being driven by the Indian Army Corps of Signals. The Indian Army is also moving towards extensive use of battlefield computers. DRDO has also delivered projects such as the Combat Net Radio for enhancing the Army's communication hardware.
DRDO has worked extensively on high speed computing given its ramifications for most of its defence projects. These include supercomputers for computational flow dynamics, to dedicated microprocessor designs manufactured in India for flight controllers and the like, to high speed computing boards built around Commercial Off The Shelf (COTS) components, similar to the latest trends in the defence industry.
DRDO is working on a slew of directed energy weapons (DEWs). LASTEC has identified DEWs, along with space security, cyber-security and hypersonic vehicles as focus areas in the next 15 years.[59] The aim is to develop laser-based weapons, deployed on airborne as well as seaborne platforms, which can intercept missiles soon after they are launched towards India in the boost phase itself. These will be part of the ballistic missile defence system being currently developed by DRDO. LASTEC is developing a 25-kilowatt laser system to hit a missile during its terminal phase at a distance of 5–7 km. LASTEC is also working on a vehicle-mounted gas dynamic laser-based DEW system, under project Aditya, which should be ready in three years. Project Aditya is a technology demonstrator to prove beam control technology. Ultimately, solid-state lasers would be used. For US President Donald Trump visit to India in 2020, DRDO deployed the LASTEC developed vehicle-mounted gas dynamic laser-based DEW system for counter-drone operations in Ahmedabad after completion of successful trial on 21 February 2020.[60] It can detect, identify and destroy low flying objects of smaller size carrying explosives or arms and ammunitions. The Aditya directed energy weapon system was first deployed during the visit of Brazilian president Jair Bolsonaro on Indian Republic Day 2020.[citation needed]
LASTEC projects include:
Non-Lethal systems:
Lethal Systems:
In view of future warfare and contactless military conflict, DRDO initiated National Directed Energy Weapons Programme in collaboration with domestic private sector industries and various public institutions. It is working on several directed energy weapons (DEW) system such as KALI (electron accelerator) based on electromagnetic radiation or subatomic particle beam to achieve short, medium and long term national goals. Initially divided into two phases, Indian Army and Indian Air Force requested minimum of 20 tactical DEWs that can destroy smaller drones and electronic warfare radar systems within 6 km to 8 km distance. Under phase 2, another 20 tactical DEWs will be developed that can destroy target within 15 km to 20 km distance which will be used against troops and vehicles from ground or air platforms. As of 2020, a truck mounted DEW of 10 kilowatt laser with range of 2 km and portable tripod mounted 2 kilowatt DEW with range of 1 km were demonstrated in field operation successfully.[61] DRDO is working on 50 kilowatt DEW along with ship motion compensation systems for the Indian Navy.[62] In future, DRDO plans to work on a bigger 100 kW DEW.[62]
DRDO is working on a classified 100 kW directed energy weapon called Directionally Unrestricted Ray-Gun Array or DURGA.[63][62]
India licence manufactures the BMP-2 with local components. The vehicle has been used as the basis for several locally designed modifications, ranging from missile launchers to engineering support vehicles. The DRDO and its various labs have been instrumental in developing these mission specific variants for the Indian Army.
Naval Physical and Oceanographic Laboratory (NPOL), Bharat Electronics and the Indian Navy have developed and productionised a range of sonars and related systems for the Indian Navy's frontline combat ships.
These include:
Other sonars such as the airborne sonar Mihir are in trials, whilst work is proceeding apace on a new generation of sonars. DRDO's sonars are already present on the Indian Navy's most powerful ships. The standard fit for a front line naval ship would include the HUMSA-NG hull mounted sonar and the Nagin towed array sonar. The Mihir is a dunking sonar meant for use by the Naval ALH, working in conjunction with its Tadpole sonobuoy. The Panchendriya is in production for the Kilo class submarine upgrades.[78][79]
DRDO is currently engaged in developing multiple torpedo designs. These include a lightweight torpedo that has been accepted by the Navy and cleared for production.[80]
Development of Shyena was started during 1990 under Naval Science and Technological Laboratory (NSTL). It is electrically propelled, can target submarines with a speed of 33 knots with endurance of six minutes in both shallow and deep waters. It is guided by active/passive acoustic homing that transition from warm to cold medium.
Varunastra is developed by Naval Science and Technological Laboratory (NSTL) as an advanced heavyweight anti-submarine torpedo that is powered by 250 KWs Silver Oxide Zinc (AgOZn) batteries.[81] It is wire guided with active-passive acoustic homing and additionally augumented by GPS/NavIC satellite guidance mechanism.
The DRDO also developed and productionised a microprocessor controlled triple tube torpedo launcher for the Indian Navy as well as a towed torpedo decoy.[82]
SMART or Supersonic Missile Assisted Release of Torpedo is a 650 km range hybrid system that involves a missile carrier and torpedo payload for anti-submarine warfare It can be launched from warship or a truck-based coastal battery.[83][84]
Armament Research and Development Establishment (ARDE) and High Energy Materials Research Laboratory (HEMRL) developed Extended Range Anti-Submarine Rocket (ERASR) to enhance the range of existing RGB-60 rocket used in RBU-6000 system. ERASR has twin motor propulsion system which can fire the rocket in short range and long range mode to achieve a distance of 500 m to 8.9 km. The rocket was successfully test fired from INS Chennai on 3 April 2023.[85][86]
In 2013, the Indian Navy reportedly sought to equip the aircraft carrier with electromagnetic catapult, which could enable the launching of larger aircraft as well as unmanned combat aerial vehicles.[87] Though, it was initially planned to be imported from foreign firms for INS Vishal, reports as of 2024 suggests, it is being developed indigenously by Bharat Electronics with assistance from private sector companies. The system concept has been demonstrated to senior Indian Navy officials and Minister of Defence. The Navy plans to gain clearance for construction of ground-based full scale model to initiate development.[88]
As per August 2024 media report, Research & Development Establishment (Engineers) has developed a scaled-down prototype capable of launching payloads up to 400 kg over a short span of 16 to 18 meters. For further development and to scale up for usage on future aircraft carriers, they are currently searching for industry partners. Platforms weighing up to 40-tons can be handled by the system. Two crucial technologies that have been successfully developed for electromagnetic catapult are Pulse Power, which controls the electromagnetic catapult's power requirements and ensures precise and dependable launches, and Linear Electric Machine, which produces the electromagnetic force required to launch aircraft.[89][90][91][92]
Naval Materials Research Laboratory (NMRL) in collaboration with Larsen & Toubro and Thermax developed a 270 kilowatt Phosphoric Acid Fuel Cell (PAFC) to power the Scorpène design based Kalvari-class submarines. It produces electricity by reacting with hydrogen generated from sodium borohydride and stored liquid oxygen with phosphoric acid acting as an electrolyte. On 8 March 2021, NMRL successfully conducted the final developmental test of the indigenous air-independent propulsion (AIP) system.[93]
Defence Laboratory at Jodhpur developed Short Range Chaff Rocket (SRCR), Medium Range Chaff Rocket (MRCR) and Long Range Chaff Rocket (LRCR) as part of passive expendable electronic countermeasure technology for the Indian Navy as per their qualitative requirement. The trials were successfully completed in the Arabian Sea as of April 2021. Unlike other systems, it uses much less quantity of chaff material as decoy for incoming missiles making it useful for longer duration use. The technology was already cleared for mass production by Indian private-sector industries.[94]
Specialized fibers with a diameter of a few microns that exhibit distinctive microwave obscuration capabilities have been developed by Defense Laboratory. It reduces radar detection by obscuring radar signals and can form a microwave shield over platforms and assets.
Microwave Obscurant Chaff (MOC) is carried on a medium range chaff rocket. When the rocket is fired, it creates a microwave obscurant cloud that spreads over a big enough region and lasts long enough to provide an effective defense against adversaries using radio frequency seekers.
Phase-I trials of Medium Range-Microwave Obscurant Chaff Rocket (MR-MOCR) were successfully carried out from Indian Navy ships, proving the persistence and blooming of the MOC cloud around naval ships. The Indian Navy has verified and validated the Radar Cross Section (RCS) reduction of an aerial target up to ninety percent in Phase-II trials. On June 26, 2024, MR-MOCR was successfully transferred to the Indian Navy by DRDO after meeting all qualifying requirements.[95][96]
These have included indigenisation of various components (for instance, adsorbent material for submarines, radar components, naval ship signature reduction efforts and materials technology). DRDO has played a significant role in the development of warship grade steel in India and its productionisation. DRDO has also assisted private industry in developing EW trainers, ship simulators for training and health monitoring systems for onboard equipment. Other equipment for the Navy includes underwater telephone sets, and VLF communication equipment, for the Navy's submarines. DRDO's IRDE has also developed optronic fire control systems for the Navy's and the Coast Guard's ships.
DRDO's labs have been part of projects to develop sophisticated command and control systems for the Navy, such as the EMCCA (Equipment Modular for Command and Control Application) which ties together various sensors and data systems. The EMCCA system gives commanders on the ship a consolidated tactical picture and adds to the ship's maritime combat power.[97]
DRDO labs are also engaged in supporting the Navy's ambitious naval enterprise wide networking system, a programme to link all naval assets together via datalinks, for sharing tactical information.
Three kinds of mines, processor based mine, moored mine and processor based exercise mine are in production for the Navy. Targets developed for the Navy include a static target called the Versatile Acoustic target and a mobile target called the programmable deep mobile target (PDMT).
The IGMDP was launched by the Indian Government to develop the ability to develop and design a missile locally, and manufacture a range of missile systems for the three defence services. The programme has seen significant success in its two most important constituents – the Agni missiles and the Prithvi missiles, while two other programmes, the Akash surface to air missile (SAM) and the anti-tank Nag missile have seen significant orders. The Trishul missile, a sub-programme to develop short-range SAM for the Indian Armed Forces faced persistent problems throughout its development. Finally the project was terminated in 2008 as a technology demonstrator.[98]
The Prithvi (Earth) missiles are a range of SRBMs produced for the Indian Air Force and Army; a variant for the Navy has been deployed on Sukanya class patrol vessel. Another submarine-launched variant known as the K-15 is under development. The Prithvi is an extremely accurate liquid fuelled missile with a range of up to 350 km. While relatively inexpensive and accurate, with a good payload, its logistics footprint is high, on account of it being liquid fuelled.[99]
The Agni (Fire) ballistic missiles are a range of MRBMs, IRBMs, ICBMs meant for long-range deterrence. The Agni-III has range of up to 3,500 km (2,175 mi). The Agni-I and Agni-II have been productionised, although exact numbers remain classified.
First trials of the Agni-III saw problems and the missile test did not meet its objectives. The second test was successful. Further tests of the Agni-III are planned to validate the missile and its subsystems, which include new propellant and guidance systems, a new reentry vehicle and other improvements.[100]
The Agni-V missile is an Intercontinental ballistic missile meant for long-range deterrence. The Agni-V is the newest version and has the longest range of up to 5000–6000 km. Agni-V would also carry Multiple independently targetable reentry vehicle payloads and will have countermeasures against Anti-ballistic missile systems. It was successfully test-fired on 19 April 2012.[101] The missile will utilise a canister and will be launched from it. Sixty percent of the missile will be similar to the Agni-III missile. Advanced technologies like ring laser gyroscope and accelerometer will be used in the new missile.[102] DRDO plans to develop reusable missiles which will be a combination of ballistic and cruise missile technology.[103] During an interview on 24 August 2014, The DRDO chief disclosed the plans of DRDO designing a Long Range ballistic Anti-ship missile.
Agni-P is a new generation of medium range ballistic missile from the Agni series that incorporates the latest developments in design, composite materials, fuels, navigation and guidance system. As of 2021, it is the smallest and lightest missile of the Agni family.[104]
The Akash (Sky or ether) is a medium-range surface-to-air missile system consisting of the command guidance ramjet powered Akash along with the dedicated service specific launchers, battery control radar (the Rajendra Block III), a central acquisition radar, battery and group control centres. The Akash project has yielded spinoffs like the Central Acquisition radar and weapon locating radar.
The Akash system cleared its user trials with the Indian Air Force in 2007. The user trials had the Akash intercept flying targets at ITR, Chandipur. The Akash missile struck its targets in every test. The Indian Air force has since been satisfied with the performance of the missile and ordered two squadrons of the Akash, with a squadron having eight launchers[105][106][107]
The Indian Air Force placed an order for an additional six squadrons of the Akash SAM in 2010, with an order of 750 missiles (125 per squadron). This order makes a total of a 1000 Akash SAMs on order for the Indian Air Force for eight squadrons.[108] In June 2010, the Defence Acquisition Council placed an order of the Akash missile system, valued at ₹12,500 crore (US$1.5 billion). Bharat Dynamics Limited will be the system integrator and nodal production agency for the Akash Army variant.
The Trishul (Trident) is a short range surface-to-air missile developed by India. It was developed by Defence Research and Development Organisation as a part of the Integrated Guided Missile Development Program. It can also be used as an anti-sea skimmer from a ship against low flying attacking missiles.[109] Trishul has a range of 9 km (5.6 mi)[110] It is powered by a dual thrust propulsion stage using high-energy solid propellant.[109] Trishul weighs 130 kg (290 lb) and is capable of carrying a 15 kg (33 lb) warhead.
The Trishul missile project was commissioned in 1983 as a part of Integrated Guided Missile Development Program. The project was to be completed by 1992 and the missile would be fitted to Brahmaputra-class frigates as an anti-sea skimmer.[111] In 1985, Trishul made its first unguided flight from Satish Dhawan Space Centre, Sriharikota. The missile made its first full range guided flight in 1989. In 1992, the missile was successfully tested against a target and reached Mach 2 speed.[111] In 1997, the associated radar systems for detecting the incoming sea-skimmer were operational. The launch system was developed by Bharat Dynamics Limited in 1998.[111] In 2003, Government of India announced that the missile will be a technology demonstrator and de-linked it from other projects. The missile was successfully test-fired in 2005.[112] The development cost of the programme was ₹2.826 billion (US$34 million) and the Defence minister announced the official closure of the programme in 2008.[113][114][115]
The Nag anti-tank missile (Cobra) is a guided missile system intended for the Indian Air Force and the Indian Army. The Army will deploy the Nag on ground-based launchers and from helicopters, whereas the Air Force will rely on helicopter based units. The Nag has an Imaging Infrared (IIR) seeker and has a top and direct attack capability, with a tandem warhead. The Army's land missile carrier and launcher, known as the Namica, carries several ready to use Nag missiles within and four Nag missiles in an extendable launcher above the turret. The Namica has its own FLIR based sighting and fire control unit.
The Air Force and Army will also use their Advanced Light helicopters (ALH) (HAL Dhruv) and the HAL Light Combat Helicopter (LHC) as Nag carriers. The ALHs will be equipped with IRDE (DRDO) developed HELITIS (Heliborne Imaging and Targeting systems) with a combination of a FLIR and laser range finder in a stabilised turret for target acquisition and designation. The thermal imager is likely to be imported, but the gimballed turret, stabilisation, laser range finder and associated electronics have been designed in India and will be manufactured locally. The Nag ATGM is regarded as a highly capable missile, even though its development has been protracted, mainly due to the technological challenges of developing a state of the art IIR sensor equipped top attack missile. The Nag is still cheaper than most imported missiles in its category and is earmarked for the Army and Air Force.
The Nag anti-tank guided missile was cleared for production in July 2009 and there are uncorroborated reports since that it may be purchased by Tanzania, Botswana and Morocco.[citation needed] The Nag will complement the existing Russian 9M113 Konkurs Anti-tank guided missile and European missile MILAN in Indian usage, both of which are manufactured under licence by Bharat Dynamics Limited.[citation needed]
India and Israel have worked out an agreement to develop and produce the long-range Barak 8 air defence system for both the Indian and the Israeli militaries. The initial co-development funding is about US$350 million, of which IAI will finance 50 per cent. The venture is a tripartite one, between the DRDO, the Indian Navy, and the IAI. The missile is referred to as the LRSAM in Indian Government literature, and will have a range of 72 km (45 mi).[116][117] Israel Aircraft Industries refers to the system as Barak-8. IAI states that the missile will have a dual pulse motor, is vertically launched and is able to engage both aircraft and sea skimming missiles. It has a fully active seeker, and the Barak-8 Weapons system is capable of multiple simultaneous engagements. It will have a two way datalink for midcourse update, as well as be able to integrate into larger C3I networks. The primary fire control sensor for the naval Barak-8/LRSAM will be the ELTA MF-STAR Naval AESA radar which Israel claims to be superior to many existing systems worldwide.[118][119][120] The dual pulse rocket motor for the SAM was developed by DRDO, and the prototypes were supplied to IAI for integration with IAI systems to develop the complete missile.
The other variant of the LRSAM will be fielded by the Indian Air Force. Along with the Akash SAM, the LRSAM fills a longer range requirement and both types will complement each other. Each unit of the MR-SAM would consist of a command and control centre, with an acquisition radar, a guidance radar and 3 launchers with eight missiles each.
A 4-year, US$300 million System Design & Development phase to develop unique system elements and an initial tranche of the land-based missiles is estimated. The radars, C2 centres, TEL's and missiles will be codeveloped by Israel and India. In turn, IAI and its Israeli partners have agreed to transfer all relevant technologies and manufacturing capabilities to India allowing India to manufacture the LRSAM systems locally as well as support them. [121] The Barak-8 next generation long-range surface-to-air missile (LR-SAM) had its first test-flight on 29 May 2010.
Astra is series of active radar homing air-to-air missile meant for beyond-visual-range missile combat.
Astra Mk 1 missile has a range of 110 km and is operationsal with Indian Air Force and Indian Navy. Astra Mk 2 and Astra Mk 3 variants are in testing phase.
It is a solid fuel short range tactical missile under development based on the technology of Pradyumna Ballistic Missile Interceptor. Upon completion of the project, Pralay will replace the older generation liquid fueled Prithvi missile.
DRDO started the project of developing an intercontinental ballistic missile, codename Surya in 1994. The information became public in 2010. It will be a three-stage missile with solid and liquid fuel as propellant.
This is a series of nuclear capable Submarine-launched ballistic missiles including, Sagarika, K4, K5 and K6 missiles designed to be launched from Arihant-class and S5 class SSBN.
The K-15 Sagarika is a nuclear-capable submarine-launched ballistic missile belonging to the K Missile family with a range of 750 kilometres (466 mi) travelling at hypersonic speed of Mach 7.5. Sagarika can carry a payload of up to 500 kilograms (1,102 lb). Sagarika was developed at the DRDO Missile Complex in Hyderabad.
This missile will form part of the triad in India's nuclear deterrence, and will provide retaliatory nuclear strike capability. The development of this missile (under the title Project K-15) started in 1991. The Indian government first confirmed Sagarika's development seven years later (1998), when the then Defence Minister, George Fernandes, announced it during a press conference.
The development of the underwater missile launcher, known as Project 420 (P420), was completed in 2001 and handed over to the Indian Navy for trials. The missile was successfully test-fired six times, and tested to its full range up to three times. The test of missile from a submerged pontoon was conducted in February 2008.
Sagarika is being integrated with India's nuclear-powered Arihant class submarines that began sea trials on 26 July 2009.
K-4 is intermediate-range sunbmarine launched missile developed by DRDO for the Indian Navy's Arihant class submarine and future S5-class submarine. The missile has length of 12 metres and diameter of 1.3 metres. It weighs nearly 17 tonnes and can carry a warhead weighing up to 2 tonnes. This missile give capability to strike deep into the enemy territory as it has the range of 3500 km. K4 missile can perform three-dimensional maneuvers and has high accuracy.
Some sources also report that it is a compact version of Agni-III as the Agni-III is nearly 17m in length so it cannot be deployed in the Arihant class submarine.
K-4 has completed all the user trials and ready for induction into the service.[122][123]
Developed as an indigenous replacement for LAHAT against heavily armoured vehicle and low flying objects. It can be fired from 120 mm rifled gun on Arjun MBT.
Man Portable Anti-Tank Guided Missile or MPATGM, is a third generation fire-and-forget anti-tank guided missile derived from Nag project under IGMDP developed by DRDO in collaboration with private sector defence contractor VEM Technologies.
A helicopter launched fourth generation ATGM developed from NAG as a stand-off range weapon that comes with dual seeker configuration.[124]
Launched as a joint venture between India's DRDO and the Russian NPO, the BrahMos programme aims at creating a range of missile systems derived from the Yakhont missile system. Named the "BrahMos" after the Brahmaputra and the Moskva rivers, the project has been highly successful.
The Indian Navy has ordered the BrahMos Naval version, both slant-launched and vertically launched, for its ships; the Indian Army has ordered two regiments worth of land-launched missiles for long-range strike; and an air-launched version is in development for the Indian Air Force's Su-30 MKIs and the Navy's Tu-142 long-range aircraft.
The DRDO has been responsible for the navigational systems on the BrahMos, aspects of its propulsion, airframe and seeker, plus its Fire Control Systems, Mobile Command posts and Transporter Erector Launcher.[125]
An upgraded version of the 290 km-range BrahMos supersonic cruise missile was successfully test-fired by India on 2 December 2010 from Integrated Test Range (ITR) at Chandipur off the Odisha coast.
"Block III version of BrahMos with advanced guidance and upgraded software, incorporating high manoeuvres at multiple points and steep dive from high altitude was flight tested successfully from Launch Complex III of ITR," its Director S P Dash said after the test-firing from a mobile launcher at 1100 hours. The 8.4-metre missile which can fly at 2.8 times the speed of sound is capable of carrying conventional warheads of up to 300 kg for a range of 290 km.
It can effectively engage ground targets from an altitude as low as ten metres for surgical strikes at terror training camps across the border without causing collateral damage. BrahMos is capable of being launched from multiple platforms like submarine, ship, aircraft and land based Mobile Autonomous Launchers (MAL). The Block III BrahMos has the capability of scaling mountain terrain and can play a vital role in precision strike in the northern territories. The advanced cruise missile can fly close to the rough geographies and kill the target[126] A five-year development timeframe is anticipated.[127]
The hypersonic Brahmos 2 is to be developed as a follow on to the original Brahmos. The missile would fly at speeds of 5-7 Mach.
Nirbhay is a long range, all-weather, subsonic cruise missile powered by solid rocket booster and turbofan or a turbojet engine that can be launched from multiple platforms and is capable of carrying conventional and nuclear warheads.[128] The missile is guided by an inertial navigation system and a radio altimeter for the height determination.[129] It carries a Ring Laser Gyroscope (RLG) based guidance, control and navigation system with additional MEMS based Inertial Navigation System (INS) along with radiodetermination-satellite service GPS/NAVIC.[130] With a range of about 1000 km, Nirbhay is capable of delivering 24 different types of warheads depending on mission requirements.[131]
The Shaurya (Valor) is a canister-launched hypersonic surface-to-surface tactical missile developed by the Indian Defence Research and Development Organisation (DRDO) for use by the Indian Armed Forces. Similar to the BrahMos, Shaurya is stored in composite canisters, which makes it much easier to store for long periods without maintenance as well as to handle and transport. It also houses the gas generator to eject the missile from the canister before its solid propellant motors take over to hurl it at the intended target.
Shaurya missiles can remain hidden or camouflaged in underground silos from enemy surveillance or satellites till they are fired from the special storage-cum-launch canisters. The Shaurya system will require some more tests before it becomes fully operational in two to three years. Moreover, defence scientists say the high-speed, two-stage Shaurya has high maneuverability which also makes it less vulnerable to existing anti-missile defence systems.
It can be easily transported by road. The missile, encased in a canister, is mounted on a single vehicle, which has only a driver's cabin, and the vehicle itself is the launch platform. This "single vehicle solution" reduces its signature – it cannot be easily detected by satellites – and makes its deployment easy. The gas generator, located at the bottom of the canister produces high pressure gas, which expands and ejects the missile from the tube.
The centrepiece of a host of new technologies incorporated in Shaurya is its ring laser gyroscope (RLG) and accelerometer. The indigenous ring laser gyroscope, a sophisticated navigation and guidance system developed by the Research Centre Imarat (RCI) based in Hyderabad is a highly classified technology.
In test flights the RLG functioned exceptionally well. the RLG monitors the missile's position in space when it is flying. The missile's on-board computer will use this information and compare it with the desired position. Based on the difference between the missile's actual and desired positions, the computer will decide the optimum path and the actuators will command the missile to fly in its desired/targeted position. The third test of the RLG was successful on 24 September 2011, reaching a speed of 7.5 mach. It is now ready for production.
The long-range hypersonic missile was tested in flight by DRDO from Abdul Kalam Island on November 16, 2024. It is intended to carry payloads for the Indian Armed Forces across a distance of more than 1,500 km at 11,113.2 km/h, or Mach 9.[132][133] Several range systems from different domains tracked the missile. The successful terminal maneuvers and impact were verified with a high degree of accuracy by DRDO using flight data gathered from down-range ship stations. The Dr. APJ Abdul Kalam Missile Complex was the site of the missile development.[134] The development of this missile with hypersonic glide warheads is probably closely related to the K-4 submarine and the Agni-P land-launched missiles.[135] The missile was previously flight tested from the Integrated Test Range, according to the Ministry of Defense's 2023 Year End Review.[136]
From a hermetically sealed container, LRAShM can be cold-launched. Before the first-stage solid rocket motor ignites, it fires attitude control thrusters twice. Beginning around 8 seconds after liftoff, the missile's trajectory shifts from vertical to horizontal in about 6 seconds. With its early post-launch change to a horizontal trajectory, the missile is intended to fly in the atmosphere for the whole mission. A booster stage and a hypersonic sustainer engine make up the two solid propellant rocket stages of the LRAShM. The mid-body of the rocket has cruciform, short span, and long chord aerodynamic surfaces, while the aft body has four small triangular fins. Fins give flight stability, whereas mid-body aerodynamic surfaces give lift, flight path control, and maneuverability. The cruciform design lowers aerodynamic drag at high speed.[137]
As opposed to a quasi-ballistic trajectory, the missile can perform the terminal maneuvers against dynamic or heavily defended targets thanks to the delta-wing hypersonic glide vehicle which can follow highly complex and adaptive flight paths. Its chance for survival is improved by its great maneuverability and low altitude trajectory.[138][139] In addition to countering any land-based danger from beyond the Line of Actual Control (LAC) in the provinces of Xinjiang, Tibet, and Yunnan, the conventionally armed missile will be able to prevent any ship-based threats in the Indian Ocean, Bay of Bengal, and Arabian Sea.[140] It will be a component of the Integrated Rocket Force.[141]
The Vehicle Research and Development Establishment (VRDE) assigned Sterling Techno-Systems, a private sector business based in Pune, the responsibility for developing the dummy article to simulate load and force on the vehicle during trials.[142] The aerodynamic characterization research was conducted at the National Aerospace Laboratories' 1.2m Trisonic Wind Tunnel Facility.[143]
Unveiled in 2006, the ABM project was a surprise to many observers. While DRDO had revealed some details about the project over the years, its progress had been marked by strict secrecy, and the project itself was unlisted, and not visible among DRDO's other programmes. The ABM project has benefited from all the incremental improvements achieved by the DRDO and its associated industrial partners via the long-running and often contentious Akash missile and Trishul missile programmes. However, it is a completely new programme, with much larger scope and with predominantly new subsystems.
The ABM project has two missiles—namely the AAD (Advanced Air Defence) and PAD (Prithvi Air Defence) missiles. The former is an endo-atmospheric interceptor of new design, which can intercept targets to a height of 30 km (19 mi). Whereas the latter is a modified Prithvi missile, dubbed the Axo-atmospheric interceptor (AXO) with a dedicated second stage kill vehicle for ballistic missile interception, up to an altitude of 80 km (50 mi). Both these missiles are cued by an active phased array Long Range Tracking Radar, similar to the Elta GreenPine but made with locally developed components, which include DRDO-developed transmit/receive modules. The ABM system also makes use of a second radar, known as the Multi-Function Control Radar which assists the LRTR in classifying the target, and can also act as the fire control radar for the AAD missile. The MFCR, like the LRTR, is an active phased array system.
The entire system was tested in November 2006, under the Prithvi Air Defence Exercise, when a prototype AXO missile intercepted another Prithvi missile at a height of 50 km (31 mi). This test was preceded by an "electronic test" in which an actual target missile was launched, but the entire interceptor system was tested electronically, albeit no actual interceptor was launched. This test was successful in its entirety. The AAD Missile was tested in December 2007 which successfully intercepted a modified Prithvi missile simulating the M-9 and M-11 class of ballistic missiles. Interception happened at an altitude of 15 km (9 mi).[144]
After testing the over 5,000 km Agni V missile, which went up to 600 km into space during its parabolic trajectory, the Defence Research and Development Organisation (DRDO) now feels it can fashion deadly anti-satellite (ASAT) weapons in double-quick time. Agni V gives you the boosting capability and the 'kill vehicle', with advanced seekers, will be able to home into the target satellite, DRDO chief, VK Saraswat said.[145] The defence ministry in 2010 had even drafted a 15-year "Technology Perspective and Roadmap", which held development of ASAT weapons "for electronic or physical destruction of satellites in both LEO (2,000-km altitude above earth's surface) and the higher geosynchronous orbit" as a thrust area in its long-term integrated perspective plan under the management of DRDO.[146] Consequently, defence scientists are focusing on "space security" to protect India's space assets from electronic or physical destruction. Another spin-off from Agni V test is that the DRDO feels it can work towards launching mini-satellites for battlefield use if an adversary attacks the country's main satellites.[145] On 27 March 2019, India conducted a successful Anti-satellite missile test from Dr A P J Abdul Kalam Island in Odisha.[147][148]
An unmanned scramjet demonstration aircraft to attain hypersonic speed flight that will also act as carrier vehicle for future hypersonic and long-range cruise missiles. It will include multiple spinoff in civilian applications including the launching of satellites at lower cost.
Prahaar is a solid-fueled surface-to-surface guided short-range tactical ballistic missile developed by DRDO of India. It would be equipped with omni-directional warheads and could be used for hitting both tactical and strategic targets. It has a range of about 150 km. It was successfully test-fired on 21 July 2011 from the Integrated Test Range (ITR) at Chandipur.[149]
Pranash is an extended range cariant of Prahaar missile being developed by. It is developing a 200 km range single stage solid fuel missile that can carry conventional warhead for battlefield use. The testing phase of the new missile will start from 2021.[150]
K-5 missile is intercontinental-range submarine launched missile being developed by DRDO. It will have the range of 5000 km and will carry the warhead of 2 tonnes. It will be solid-fuelled. It will be ready for test in 2022. K-5 will be fastest missile in his family.[151][152]
K-6 missile is intercontinental-range submarine launched missile being developed by DRDO. It will have a range of 6000–8000 km. It will also carry the payload of 2 tonnes. It will enable the Navy's submarine to aim at any country while patrolling in the "safe haven".[153][154]
The Submarine Launched Cruise Missile (SLCM) is a missile designed to launch from torpedo tubes of submarines. It is a compact version of Nirbhay missile. It has a stated range of 500 km, with a cruise length of 5.6 meter, diameter of 0.505 meter, all up weight of 975 kg and Mach 0.7 speed. It would feature INS/GPS navigation, with an RF seeker for terminal guidance. It comes with two variants: a Land attack cruise missile (LACM) and Anti-Ship Cruise Missile (ASCM).[155][156]
The LR-LACM, a longer range variant, will have a range up to 1,500 km. This missile would be operated by both the Indian Navy and Indian Air Force when development is complete. This missile would be compatible with the Universal Vertical Launch Module (UVLM) cells used for BrahMos.[157][158] The missile received Acceptance of Necessity (AoN) from Defence Acquisition Council (DAC) in August 2023. It will weigh a tonne, have a length of 6 m and diameter of 0.52 m. The missile is designed to have two tapering-chord fold-out wings with a span of 2.7 m. The missile would be equipped with Small Turbofan Engines (STFEs), upgraded radio frequency (RF) seekers, and other subsystems.[159]
From year 2010 onwards, Defence Research and Development Organisation (DRDO) started working on critical technologies for future longer range air-to-air missile that can also be used in surface-to-air missile systems. Solid Fuel Ducted Ramjet (SFDR) is one such missile propulsion technology that uses thrust modulated ducted rocket with a reduced smoke nozzle-less missile booster.
NGARM (New Generation Anti-Radiation Missile) now officially called Rudram is a series of air-to-surface, anti-radiation missile of range 150, 300 and 550 km respectively. These are meant to provide air superiority, tactical capability to Indian Air Force for suppression of enemy air defenses (SEAD), that can be launched from a range of altitudes.[160]
DRDO is developing a series long range surface to air missile to supplement Barak-8 and S-400 systems for its multi-tier air defence umbrella protecting the Indian airspace. It will use some of the key technologies developed during Ballistic Missile Defence Programme.
Akash-NG is new generation of Akash missile developed by DRDO. The missile uses a Ku-band Active radar seeker, an active electronically scanned array Multi-Function Radar (MFR) and optical proximity fuse will improve the effectiveness of the missile against targets with low radar cross-section. It is the successor of Akash missile and has range of 80 km.
DRDO developed QRSAM as part of replacement program for the Soviet era 9K33 Osa and 2K12 Kub that is being used extensively by Indian Army and Indian Air Force. It is built for an all weather, all terrain scenario with electronic counter-countermeasure system against aerial targets. It has an engagenment range of minimum 3 km to a maximum of 30 km that is powered by solid fuel propellant, maintaining a speed of 4.7 Mach in flight. The missile system uses a two way data link communication with active radar homing.[161]
Vertical launched-Short Range Surface- to-Air Missile (VL-SRSAM) is a quick reaction short range missile being developed by DRDO for naval service and to replace Barak 1 missile. The missile is naval variant of Astra with some design and technological changes for an all weather point and area defence role against flying targets such as fighter aircraft, unmanned aerial vehicles etc. It has the range of 45 km.[162]
VSHORADS or Very Short Range Air Defence System is a man portable air defence system (MANPAD) meant for neutralizing low altitude aerial threats at short ranges. The missile uses solid fuel based dual-thrust rocket motor and is developed by Research Centre Imarat . On 27 September 2022, DRDO conducted two successful launches from Integrated Test Range, Chandipur. To increase mid-air maneuverability, the missile is equipped with miniaturized Reaction Control System (RCS).[163]
The project is sanctioned in 2017 for a 5–55 km short range air-launched Naval Anti-Ship Missile (NASM–SR) to replace Sea Eagle missiles in use by the Indian Navy with future variants ranged in excess of 150 km.[164]
Naval Anti-Ship Missile–Medium Range is an anti-ship missile being developed by the Defence Research and Development Organisation for the Indian Navy. It is the second indigenous anti-ship cruise missile developed for the Indian Navy. DRDO has been given permission to develop an indigenously developed anti-ship missile known as the Naval Anti-ship Missile-Medium range (NASM-MR), which is a significant step toward self-reliance in niche missile technology
India's first laser-guided bomb, Sudarshan is the latest weapon system developed indigenously to occupy the niche of a precision delivery mechanism. It can be fitted to a 450 kilograms (990 lb) gravity bomb and can guide it to the target using lasers with a CEP (Circular Error Probability) of 10 metres.
Garuthmaa & Garudaa are DRDO's 1000 kg Glide Bombs. These are India's first indigenously designed glide bomb with a range of 30 km (Garudaa) to 100 km (Garuthmaa).
Smart Anti-Airfield Weapon (SAAW) is a long-range precision-guided anti-airfield weapon engaging ground targets with high precision up to a range of 100 kilometres.
This is a family of both guided and unguided munition developed by the Armament Research and Development Establishment (ARDE) for the new generation Indian, NATO and Russian origin aircraft.
Aerobic Vehicle for Transatmospheric Hypersonic Aerospace Transportation also known as AVATAR is a DRDO concept for a robotic single-stage reusable spaceplane capable of horizontal takeoff and landing, that can be used for space launches of low cost military and commercial satellite.
The Defence Research and Development Organisation (DRDO) has launched a ₹100 crore (US$12.0 million) project in R&D in the area of gas turbines, a DRDO official said in April 2010. Under the initiative of DRDO's Aeronautics Research and Development Board, R&D projects, which need investment in the region of ₹50 lakh (US$59,909.50) to ₹5 crore (US$599,094.60), would be considered for funding. GTRE was the nodal agency to spearhead this venture, called GATET[165][166][167]
Communication-Centric Intelligence Satellite is an advanced reconnaissance satellite, being developed by DRDO. It will be India's first officially declared spy satellite and according to ISRO it should be in the sky by 2014.[168] This satellite will help Indian intelligence agencies to significantly boost surveillance of terror camps in neighbouring countries.
Sagar Defence Engineering received a contract for this project from the DRDO. The goal is to create ULUAVs that can land on another moving vehicle and launch from a submarine and function independently. In order to gather data, it will also be outfitted with sensors, sonar, and cameras. The ULUAV will be able to be launched swiftly, safely, and independently from a moving submarine. It will also have a vast range and great endurance. The Defence Research and Development Laboratory will serve as a partner lab, while the DRDO Technology Development Fund will provide funding for the project. Separately, NewSpace Research and Technologies in collaboration with Larsen & Toubro are also working on a comparable system. The ULUAV will be employed for intelligence, surveillance, and reconnaissance (ISR) missions and radio relays in anti-access/area-denial (A2/AD) situations by smoothly integrating with the current naval fleet.[169][170]
In accordance with the range requirements for NavIC for both military and commercial applications, Defence Research and Development Organisation, through the Technology Development Fund scheme, has commissioned Accord Software and Systems, to build a tailored and flexible IRNSS Network Timing system domestically. Using NavIC data, the receiver chip will obtain and distribute Indian time for navigation. India currently depends on the US for this service.[171]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.