Remove ads
Aus Wikipedia, der freien Enzyklopädie
Die Sphäre ist ein wichtiges Objekt in den mathematischen Teilgebieten Topologie und Differentialgeometrie. Aus Sicht dieser mathematischen Gebiete ist die Sphäre eine Mannigfaltigkeit. Sie ist deshalb so wichtig, weil sie das einfachste Beispiel einer kompakten Mannigfaltigkeit ist.
Im Bereich der Differentialtopologie wird die Sphäre noch mit einer differenzierbaren Struktur ausgestattet, so dass man von differenzierbaren Abbildungen auf der Sphäre sprechen kann. Auf einer topologischen Mannigfaltigkeit ist es in der Regel möglich unterschiedliche nicht kompatible differenzierbare Strukturen zu definieren. Die stereografischen Projektion beispielsweise induziert die auf der Sphäre meist betrachtete differenzierbare Struktur. Bei der Sphäre hängt es von der Dimension ab, ob es noch weitere differenzierbare Strukturen gibt. Der Mathematiker John Milnor beschäftigte sich mit diesem Thema und zeigte die Existenz von sogenannten exotischen Sphären.
Die Poincaré-Vermutung lautet:
Darüber hinaus gibt es noch eine Verallgemeinerung der Vermutung, auf n-dimensionale Mannigfaltigkeiten in der folgenden Form:
Für den Fall n=3 stimmt diese verallgemeinerte Vermutung mit der ursprünglichen Poincaré-Vermutung überein. Für den Fall wurde sie 1960 von Stephen Smale bewiesen, für den Fall 1982 von Michael Freedman. Der russische Mathematiker Grigori Perelman bewies die Poincaré-Vermutung im Jahre 2002, wofür ihm die Fields-Medaille zuerkannt wurde. Diese lehnte er jedoch ab.
Der US-amerikanische Mathematiker John Milnor fand 1956 heraus, dass es differenzierbare Mannigfaltigkeiten gibt, die homöomorph zur 7-Sphäre sind, ihre differenzierbaren Strukturen jedoch nicht kompatibel miteinander sind. Zusammen mit dem Schweizer Mathematiker Michel Kervaire zeigte er, dass für die 7-Sphäre 15 verschiedene differenzierbare Strukturen (28 bei Berücksichtigung der Orientierung) existieren.
Die Mathematiker Harry Rauch, Wilhelm Klingenberg und Marcel Berger konnten zeigen, dass bei bestimmten Voraussetzungen an die Krümmung kompakter riemannscher Mannigfaltigkeit diese homöomorph zur Sphäre sind, es sich also um topologische Sphären handelt. Diese Aussage wurde noch verschärft. Es konnte sogar gezeigt werden, dass diese riemannsche Mannigfaltigkeit dann diffeomorph zur Sphäre mit der normalen differenzierbaren Struktur ist.
Die einzigen Sphären, die gleichzeitig eine Gruppenstruktur haben und damit eine topologische Gruppe bilden, sind die 0-, 1- und die 3-Sphäre. Dabei entspricht der 0-Sphäre die Gruppe , der 1-Sphäre die Lie-Gruppe U(1) und der 3-Sphäre die Lie-Gruppe SU(2).
Die 7-Sphäre ist zwar keine topologische Gruppe, aber sie ist eine echte Moufang-Loop, da sie durch die Oktonionen mit dem Betrag 1 beschrieben werden kann.
Die 1-, 3- und 7-Sphäre sind die einzigen Sphären, die parallelisierbar sind. Aus dem Satz vom Igel folgt, dass eine Sphäre mit gerader Dimension nicht parallelisierbar ist. Die Ausnahmestellung der 1-, 3- und 7-Sphäre hängt allerdings mit der Existenz der Divisionsalgebren zusammen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.