Tabelle von Ableitungs- und Stammfunktionen

Wikimedia-Liste Aus Wikipedia, der freien Enzyklopädie

Diese Tabelle von Ableitungs- und Stammfunktionen (Integraltafel) gibt eine Übersicht über Ableitungsfunktionen und Stammfunktionen, die in der Differential- und Integralrechnung benötigt werden.

Tabelle einfacher Ableitungs- und Stammfunktionen (Grundintegrale)

Zusammenfassung
Kontext

Diese Tabelle ist zweispaltig aufgebaut. In der linken Spalte steht eine Funktion, in der rechten Spalte eine Stammfunktion dieser Funktion. Die Funktion in der linken Spalte ist somit die Ableitung der Funktion in der rechten Spalte.

Hinweise:

  • Wenn eine Stammfunktion von ist und eine beliebige reelle Zahl (Konstante), dann ist auch eine Stammfunktion von . Zum Beispiel ist auch eine Stammfunktion von . Ist der Definitionsbereich von ein Intervall, so erhält man auf diese Art alle Stammfunktionen. Besteht der Definitionsbereich von aus mehreren Intervallen, so kann die additive Konstante auf jedem der Intervalle getrennt gewählt werden. Die additive Konstante wird aus Gründen der Übersichtlichkeit in der Tabelle nicht aufgeführt.
  • Weiterhin gilt: Falls eine Stammfunktion von ist, so ist aufgrund der Linearität des Integrals eine Stammfunktion von .
  • Ebenso gilt: Sind und Stammfunktionen von und , so ist eine Stammfunktion von .

Potenz- und Wurzelfunktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Exponential- und Logarithmusfunktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion
[A 1]
Schließen

Anmerkung:

  1. Sonderfall von für , siehe oben in „Potenz- und Wurzelfunktionen

Trigonometrische Funktionen und Hyperbelfunktionen

Trigonometrische Funktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Hyperbelfunktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Elliptische Funktionen und elliptische Integrale

Zusammenfassung
Kontext

Viele Stammfunktionen von algebraischen Funktionen können nicht elementar dargestellt werden. Für die Darstellung von den Stammfunktionen dieser algebraischen Funktionen genügen für die Darstellung nicht die Kreisbogenmaßfunktionen, die Hyperbelflächenmaßfunktionen, die Logarithmen und die algebraischen Funktionen alleine. Diese nicht elementar darstellbaren Integrale von den genannten algebraischen Funktionen werden elliptische Integrale genannt. Ihre Umkehrfunktionen werden als elliptische Funktionen bezeichnet. Diejenigen elliptischen Integrale, welche den Definitionsbereich der betroffenen algebraischen Funktion komplett abschließen, werden vollständige elliptische Integrale genannt. Der Quotient des vollständigen elliptischen Integrals erster Art vom Pythagoräisch komplementären Modul dividiert durch das vollständige elliptische Integral erster Art vom betroffenen Modul selbst wird als reelles Halbperiodenverhältnis oder als reelles Periodenverhältnis bezeichnet. Das elliptische Nomen ist die Exponentialfunktion aus dem negativen Produkt der Kreiszahl und des reellen Periodenverhältnisses. Die Jacobischen Thetafunktionen ordnen das elliptische Nomen den algebraischen Vielfachen von der Quadratwurzel des vollständigen elliptischen Integrals erster Art zu. Ebenso werden diejenigen Funktionen als elliptische Funktionen bezeichnet, welche als algebraische Kombinationen aus den Jacobischen Thetafunktionen hervorgehen.

Elliptische Stammfunktionen von algebraischen Wurzelfunktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion

Schließen

Vollständige Elliptische Integrale

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Amplitudenfunktionen und lemniskatische Funktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Jacobische Thetafunktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion

Schließen

Polylogarithmische Funktionen

Zusammenfassung
Kontext

Die nicht elementaren Stammfunktionen von transzendenten Funktionen logarithmischer und arkusfunktionaler Art sowie die stammfunktionale Verkettung dieser Stammfunktionen werden als Polylogarithmen bezeichnet. Über den Rang der Polylogarithmen entscheiden die Indexzahlen in Fußnotenposition. Bei Indexzahl Zwei liegt der Dilogarithmus vor, welcher direkt als Ursprungsstammfunktion des elementar beschaffenen Monologarithmus hervorgeht. Die Linearkombinationen aus den Standard-Polylogarithmen werden Legendresche Chifunktionen genannt. Die Bestandteile der Stammfunktionskette von den Kreisbogenmaßfunktionen werden als Arkusfunktionsintegrale wie beispielsweise als Arkustangensintegrale und Arkussinusintegrale bezeichnet. Die imaginären Gegenstücke zu den Legendreschen Chifunktionen werden akkurat durch die Arkustangensintegrale der Standardform gebildet. Die Polylogarithmen aus Exponentialfunktionsausdrücken werden Debyesche Funktionen genannt und spielen bei der statistischen Thermodynamik die essentielle Hauptrolle unter den Funktionen.

Polylogarithmen der Standardform

Weitere Informationen Funktion ...
Funktion Stammfunktion
für den Fall
für den Fall
Schließen

Arkustangensintegral und Arkussinusintegral

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Debyesche Funktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Riemannsche und Dirichletsche Funktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Sonstige

Verallgemeinerte Integrationsregeln

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Lambertsche W-Funktion und invertierte Langevin-Funktion

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Integralexponential- und Integrallogarithmusfunktion

Die Integralexponentialfunktion und der Integrallogarithmus sind nicht elementar lösbar. Deswegen wird in den Stammfunktionen zusätzlich die Reihenentwicklung angegeben. Die als Integrationskonstante auftretende Konstante ist die Euler-Mascheroni-Konstante.

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen

Integralkreisfunktionen und Gaußsches Fehlerintegral

Weitere Informationen Funktion ...
Funktion Stammfunktion
[B 1]
[B 1]
Schließen

Gammafunktion und Polygammafunktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion
[B 2]
Schließen

Besselsche Funktionen und Airysche Funktionen

Weitere Informationen Funktion ...
Funktion Stammfunktion
Schließen
  1. ist die Fehlerfunktion
  2. ist die Harmonische Reihe

Rekursionsformeln für weitere Stammfunktionen

Multiplikation von Stammfunktionen

Zusammenfassung
Kontext

Für die Multiplikation zweier Stammfunktionen kann der Satz von Fubini in Kombination mit der Produktregel angewendet werden:

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.