trigonometrische Funktionen Aus Wikipedia, der freien Enzyklopädie
Sekans und Kosekans sind trigonometrische Funktionen. Der Sekans wird mit bezeichnet, der Kosekans mit oder [1]. Die Funktionen haben ihren Namen durch die Definition im Einheitskreis. Die Funktionswerte entsprechen der Länge von Sekantenabschnitten:
Beide Funktionen haben keine horizontalen Asymptoten.
Sprungstellen
Beide Funktionen haben Sprungstellen.
Wendepunkte
Beide Funktionen haben keine Wendepunkte.
Wichtige Funktionswerte
Da Sekans und Kosekans periodische Funktionen mit der Periode (entspricht im Gradmaß ) sind, reicht es, die Funktionswerte des Sekans für den Bereich und die des Kosekans für den Bereich zu kennen. Funktionswerte außerhalb dieses Bereichs können also aufgrund der Periodizität durch den Zusammenhang
bestimmt werden. In Gradmaß lautet der Zusammenhang analog
Hierbei bezeichnet eine ganze Zahl. Die folgende Tabelle listet die wichtigen Funktionswerte der beiden trigonometrischen Funktionen in einer leicht zu merkenden Reihe auf.[2]
, weil das rechtwinklige Dreieck im Einheitskreis (mit der Hypotenuse 1) gespiegelt an der -Achse dann gleichseitig ist (mit Seitenlänge 1), und somit die Seitenlänge die doppelte Länge der Gegenkathete ist.
, weil für das rechtwinklige Dreieck im Einheitskreis (mit der Hypotenuse 1) wegen für den Sekans nach Pythagoras gilt .
Weil der Sekans jeweils der Kehrwert des Kosinus und der Kosekans der Kehrwert des Sinus ist, lassen sich die Funktionswerte und genau dann mit Quadratwurzeln darstellen, wenn das auch für und möglich ist.
Generell gilt, dass und genau dann explizit mit den vier Grundrechenarten und Quadratwurzeln darstellbar sind, wenn der Winkel mit Zirkel und Lineal konstruierbar ist, insbesondere also wenn von der Gestalt
Bevor elektronische Rechenmaschinen allgegenwärtig waren, verwendete man für die Winkelfunktionen Tabellen, meist in gedruckten Büchern. Mit einem solchen Funktionswert aus einer Tabelle zu multiplizieren war bequemer und praktischer, als durch so einen Wert zu dividieren (dies gilt übrigens auch für nicht aufgehende Wurzelwerte usw.); wenn in einer Formel also ein Sinus oder Kosinus im Nenner steht, ist es bequem, statt dieser Werte die entsprechenden Kosekans- bzw. Sekanswerte in den Zähler zu schreiben.
Dieses Argument ist im Zeitalter der allgemein verfügbaren elektronischen Taschenrechner nur noch von historischer Bedeutung; Sekans und Kosekans sind in den neueren Formelsammlungen nicht mehr erwähnt und auch nicht als Funktionen (mit eigener Taste) in den Rechnern implementiert. Für diesen Zweck sind diese Funktionen schlicht überflüssig geworden; sie lösten ein Problem, das nicht mehr besteht.