Remove ads
Dreieck mit einem rechten Winkel Aus Wikipedia, der freien Enzyklopädie
Ein rechtwinkliges Dreieck ist ein Dreieck mit einem rechten Winkel. Es bildet die Grundlage für den Satz des Pythagoras, für Sinus und Kosinus und weitere trigonometrische Funktionen.
Als Hypotenuse bezeichnet man die längste Seite eines rechtwinkligen Dreiecks. Sie liegt dem rechten Winkel gegenüber.
Als Kathete (aus dem griechischen káthetos, das Herabgelassene, Senkblei) wird jede der beiden kürzeren Seiten in einem rechtwinkligen Dreieck bezeichnet. Die Katheten sind also die beiden Seiten des rechtwinkligen Dreiecks, die den rechten Winkel bilden. In Bezug auf einen der beiden spitzen Winkel (in der Skizze ) des Dreiecks unterscheidet man die Ankathete dieses Winkels (die dem Winkel anliegende Kathete) und die Gegenkathete (die dem Winkel gegenüberliegende Kathete).
Ein rechtwinkliges Dreieck ist durch drei Bestimmungsstücke vollständig bestimmt: den rechten Winkel, eine Seite sowie eine weitere Seite oder einen weiteren Winkel. Des Weiteren ist die Höhe gleich der Kathete sowie die Höhe gleich der Kathete .
Mathematische Formeln zum rechtwinkligen Dreieck | ||||
---|---|---|---|---|
Flächeninhalt | ||||
Hypotenuse | ||||
Kathete | ||||
Umfang | ||||
Höhe | ||||
Winkel | ||||
Inkreisradius | ||||
Ankreisradien | ||||
Umkreisradius |
Satz des Pythagoras | ||
Kathetensatz | ||
Höhensatz |
Der Satz wurde erst im Jahr 1991 formuliert, „ist aber sicher schon sehr viel älter“.[1]
„Die Winkelhalbierende des rechten Winkels eines rechtwinkligen Dreiecks teilt das Hypotenusenquadrat in zwei kongruente Flächen.“
Es sei ein beliebiges Dreieck mit der Hypotenuse dem Hypotenusenquadrat und mit der Winkelhalbierenden des rechten Winkels am Scheitel Die Winkelhalbierende schneidet im Punkt sowie im Punkt das Hypotenusenquadrat in zwei Vierecke und
Beweise
A) Beweis durch Symmetrie, Bild 1,[1][2] gleichermaßen der Geometrische Beweis durch Ergänzung für den Satz des Pythagoras.
B) Ansatz für einen alternativen Beweis, Bild 2:
Zuerst wird der Mittelpunkt der Hypotenuse bestimmt, anschließend der Kreis mit dem Radius um eingezeichnet und die Mittelsenkrechte des Durchmessers mit den soeben erzeugten Schnittpunkten und eingetragen. Der Schnittpunkt entspricht dem Mittelpunkt des Hypotenusenquadrates Abschließend noch den Punkt mit verbinden.
Das einbeschriebene Dreieck hat am Scheitel den Zentriwinkel mit der Winkelweite gleich Nach dem Kreiswinkelsatz (Zentriwinkelsatz) hat der Winkel folglich die Winkelweite damit verläuft die Winkelhalbierende ebenfalls durch den Mittelpunkt des Hypotenusenquadrates
Somit bestätigt sich, die beiden Dreiecke und sind kongruent, demzufolge haben auch die Vierecke und gleiche Flächeninhalte.
Für die Katheten und gilt , also . Addition von ergibt , also . Nach dem Satz des Pythagoras folgt daraus und die Ungleichungen
Die rechte Ungleichung ist ein Spezialfall der Ungleichung vom arithmetischen und geometrischen Mittel.
Die linke Ungleichung wird auch als Dreiecksungleichung für rechtwinklige Dreiecke bezeichnet (siehe Abb. 1 für den Fall der Ungleichheit und Abb. 2 für den Fall der Gleichheit).[7][8]
Division von durch die linke Ungleichung ergibt . Wegen folgt daraus
Aus folgt wegen , , für die Kehrwerte , also . Multiplikation mit auf beiden Seiten ergibt . Wegen folgen daraus die genaueren Ungleichungen
Die Gleichungen und gelten genau dann, wenn , also für ein rechtwinkliges und gleichschenkliges Dreieck mit den Innenwinkeln , und .
Wie aus dem Bild ersichtlich, liegt von den vier „klassischen“ ausgezeichneten Punkten im rechtwinkligen Dreieck, der Höhenschnittpunkt (hellbraun) direkt im Scheitel des rechten Winkles, Eckpunkt , und der Umkreismittelpunkt (hellgrün) in der Mitte der Dreieckseite Der Schwerpunkt (dunkelblau) sowie der Inkreismittelpunkt (rot) sind innerhalb des Dreiecks.
Der Mittelpunkt des Feuerbachkreises (beides hellblau) ist in der Mitte der Strecke und ebenfalls innerhalb des Dreiecks. Auf dem Feuerbachkreis liegen dessen neun ausgezeichnete Punkte, von denen aber, aufgrund der Position des Höhenschnittpunktes nur fünf zu sehen sind. Es sind dies die Seitenmittelpunkte und sowie die Höhenfußpunkte und Zwei der drei Mittelpunkte der sogenannten oberen Höhenabschnitte, nämlich und liegen auf den Seitenmittelpunkten bzw. Der dazugehörende dritte Mittelpunkt liegt auf dem Scheitelpunkt Schließlich findet man den dritten Höhenfußpunkt auf dem Höhenschnittpunkt
Die Bezeichnungen der ausgezeichneten Punkte und deren Positionen sind mit denen des spitzwinkligen Dreiecks vergleichbar.[9] Die Punkte , , und befinden sich, wie bei allen Dreiecken, auf der Eulerschen Gerade (rot).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.