Loading AI tools
konvexes, diagonal spiegelsymmetrisches Viereck Aus Wikipedia, der freien Enzyklopädie
Ein Drachenviereck (auch Drachen oder Deltoid[1], in Österreich wird ausschließlich Deltoid verwendet) ist ein ebenes Viereck,
oder
Beide Definitionen sind äquivalent.
Oft wird nur die konvexe Form des Deltoids als Drachenviereck bezeichnet und die konkave Form als Pfeilviereck oder Windvogelviereck. Die Bezeichnung Drachenviereck verweist auf die Form vieler Flugdrachen.
Ein spezielles Drachenviereck ist die Raute (Rhombus). Sie ist ein gleichseitiges Deltoid.
Für jedes Drachenviereck gilt (siehe Abbildung):
Für jedes konvexe Drachenviereck gilt:
Ein Tangentenviereck ist genau dann ein Drachenviereck, wenn eine der folgenden Bedingungen erfüllt ist:[2]
Mathematische Formeln zum Drachenviereck | ||
---|---|---|
Flächeninhalt | ||
Umfang | ||
Seitenlängen | ||
Länge der Diagonalen
(siehe Kosinussatz, |
||
mit | ||
Inkreisradius | ||
Innenwinkel
(siehe Kosinussatz) |
||
Ein schräges Drachenviereck ist ein ebenes Viereck, in dem eine der Diagonalen durch die andere halbiert wird.[3] Ein solches Viereck wird manchmal auch schief genannt.[4] Bei einem schrägen Drachenviereck stehen die Diagonalen also nicht zwangsläufig orthogonal zueinander. Das Drachenviereck ist in diesem Sinne ein gerader Drachen. Für das schräge Drachenviereck gilt eine über das Kreuzprodukt verallgemeinerte Formel für den Flächeninhalt.
Ein Viereck ist genau dann ein schiefes Drachenviereck, wenn es sich von einem inneren Punkt aus mit geraden Verbindungen zu den vier Ecken in vier flächengleiche Dreiecke zerlegen lässt.[5]
Einige besondere Parkettierungen enthalten Drachenvierecke. Bekannt ist vor allem die Penrose-Parkettierung.
Einige Polyeder haben Drachenvierecke als Seitenflächen. Die Oberfläche von Deltoidalikositetraeder und Deltoidalhexakontaeder, zweier catalanischer Körper, besteht aus kongruenten Drachenvierecken.
Die Rhomboeder, das Rhombendodekaeder und das Rhombentriakontaeder haben sogar Rauten als Seitenflächen. Die genannten Polyeder sind drehsymmetrisch, d. h. sie können durch Drehung um bestimmte Rotationsachsen auf sich selbst abgebildet werden.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.