Remove ads
Unterklasse von Hybridfahrzeugen Aus Wikipedia, der freien Enzyklopädie
Ein Hybridelektrokraftfahrzeug (englisch Hybrid Electric Vehicle, HEV), gemäß EU-Richtlinie[1] kurz Hybridelektrofahrzeug, umgangssprachlich auch Hybridfahrzeug oder Hybridauto, akademisch Fahrzeug mit Hybridantrieb oder aber auch Fahrzeug mit Hybridmotor, ist ein Elektrofahrzeug, das von mindestens einem Elektromotor sowie einem weiteren Energiewandler angetrieben wird und Energie sowohl aus seinem elektrischen Speicher (Akku) als auch einem zusätzlich mitgeführten Kraftstoff bezieht.[2]
Nur in der Ausführung als Plug-in-Hybrid ist eine elektrische Aufladung am Stromnetz vorgesehen. Klassisch wird dazu ein Verbrennungsmotor mit einem elektrischen Generator eingesetzt, zunehmend auch Brennstoffzellen, die aus mitgeführtem Wasserstoff direkt Elektrizität gewinnen, speziell bezeichnet als Brennstoffzellenfahrzeug (englisch Fuel Cell Hybrid Vehicle, FCHV).
Ein Hybridantrieb kann mit unterschiedlichen Zielvorgaben gestaltet werden: Schon in seiner historischen Entwicklung für erste Elektrofahrzeuge um 1900 ging es allein um Reichweite. Im Serien-Automobilbau sowie im Motorsport wird er zuweilen ergänzend als Beschleunigungsreserve eingesetzt, die vor allem im niedrigen Drehzahlbereich das Drehmoment steigert, und um mit Rekuperationsbremse sowie durch optimalen Arbeitspunkt des Verbrennungsmotors dessen Effizienz und Kraftstoffverbrauch zu verbessern. Gegenwärtig werden Verbrennungsmotoren mit Akkumulatoren kombiniert, es lassen sich aber auch Superkondensatoren als besonders leistungsstarke Kurzzeit-Reserve für höchste Beschleunigung einsetzen.
Ein Verbrennungsmotor lässt sich folgendermaßen charakterisieren:
Der Wirkungsgrad eines Ottomotors beträgt bei optimaler Drehzahl und Auslastung maximal ca. 37 %. Er ist bei gegebener Drehzahl stark lastabhängig – knapp unter Volllast am höchsten, Absinken bis zum Leerlauf auf null. Das heißt, im Teillastbetrieb, wenn wenig Gas gegeben wird, haben Ottomotoren einen schlechten Wirkungsgrad. Bei Marx[3] werden für Fahrzeuge mit Verbrennungsmotor 20 % Effizienz angegeben.
Teillast und Leerlauf des Verbrennungsmotors kommen im Stadtverkehr häufig vor und können in Hybrid-Elektrokraftfahrzeugen weitgehend vermieden werden. Der Verbrenner kann nun häufiger und länger bei hoher Last mit günstigem Wirkungsgrad betrieben werden. Die anfallende überschüssige Energie wird über einen Generator für die Akkuladung verwendet. Beim Beschleunigen können Verbrennungs- und Elektromotor gemeinsam arbeiten. Bei gleicher Beschleunigung kann also ein kleinerer Verbrennungsmotor verwendet werden (Downsizing). Beim Bremsen und im Schubbetrieb wird der größere Teil der Bremsenergie in den Akkumulator zurückgeführt (Nutzbremse). Insbesondere im Stadtverkehr tragen diese Rückgewinnungen zur Verbrauchsverminderung um bis zu 60 % bei. Der Verbrennungsmotor ist abgeschaltet, wenn keine oder wenig Antriebsleistung benötigt wird. Die Lärmreduktion im Schubbetrieb, bei Stillstand oder bei Langsamfahren (Einparken) mit geladenem Akku ist im städtischen Raum ein weiterer Gewinn. Auf einen separaten Anlasser kann verzichtet werden, weil der Elektromotor die Funktion mit übernimmt.
Elektromotoren haben einen vergleichsweise hohen Wirkungsgrad von über 90 %.[3] Dieser bleibt über einen weiten Drehzahlbereich hoch. Die Effizienz sinkt bei hohem Drehmoment ab, insbesondere bei Überlastung.
In die elektrische Gesamtbilanz geht noch der Speicherwirkungsgrad des Akkumulators ein. Superkondensatoren werden bisher selten verbaut.[4] Letztere sind ebenso wie die Leistungselektronik sehr effizient (> 90 %), während die Effizienz des Akkumulators aufgrund des Peukert-Effektes je nach Akkuchemie und Belastung geringer sein kann. Für Elektroantriebe wird ein Gesamtwirkungsgrad von 85 % angegeben.[3]
Elektromotoren sind zudem überlastbar, das heißt, sie können ein höheres Drehmoment und kurzzeitig eine höhere Leistung abgeben als ihre Nennleistung. Dieses Drehmoment steht auch bei stehendem Motor zur Verfügung, anders als beim Verbrennungsmotor, der erst ab einer Mindestdrehzahl belastet werden kann. Durch Kombination der beiden Motoren kann das Fahrzeug bei gleicher Systemleistung um etwa 10–20 % schneller beschleunigen (elektrisches Boosten). Aufgrund des bei Hybridfahrzeugen oft klein ausgelegten Verbrennungsmotors haben sie häufig eine etwas geringere Höchstgeschwindigkeit und sind bei hoher Leistungsanforderung lauter, weil sie dann in höheren Drehzahlbereichen arbeiten müssen.
Das Fahrmanagement sorgt einerseits für einen hohen Fahrkomfort und gewünschte Beschleunigungswerte, andererseits optimiert es durch die Wahl und Aufteilung der zwei Antriebe den Gesamtwirkungsgrad. Es bestehen drei Möglichkeiten:
Dadurch lässt sich der Gesamtwirkungsgrad des Fahrzeuges auf über 38 % steigern.[5] Zur Anzeige des Betriebszustands kann ein Econometer dienen.
Dieselmotoren haben einen etwas günstigeren Wirkungsgradverlauf (kleine Drosselverluste), weshalb sie weniger vom Einbau eines Elektromotors und Akkumulators profitieren.
Bei konstanter, schneller Fahrt auf der Autobahn kann sich das Zusatzgewicht in einem höheren Verbrauch niederschlagen.[6] Wird beschleunigt und abgebremst oder wechseln sich Berg- und Talfahrten ab, kann der durch das Zusatzgewicht bedingte Mehrverbrauch durch die Möglichkeit der Nutzbremse überkompensiert werden. Eine vorausschauende Fahrweise kann schon beim normalen Pkw 10 bis 20 Prozent des Verbrauchs einsparen,[7] während dieser Wert beim Hybrid nochmals zunimmt, weil jedes vorausschauende Bremsen der Energiegewinnung dienen kann. Der Verbrennungsmotor arbeitet bei Autobahngeschwindigkeit bereits in einem relativ günstigen Wirkungsgradbereich.
Der Hybridantrieb ermöglicht es, den Verbrennungsmotor anders auszulegen als in einem Fahrzeug, in dem er allein ständig das Fahrzeug antreiben muss. So betreiben u. a. Toyota und Honda den Verbrennungsmotor im Atkinson-Zyklus und erzielen damit Kraftstoffeinsparung und Lautstärkereduzierung bei niedriger bis mittlerer Leistung.
Werden die Akkumulatoren nur mit dem Verbrennungsmotor über den eingebauten Generator geladen, wird der Hybrid als autark bezeichnet. Beim Plug-in-Hybrid können die Akkus hingegen auch am Stromnetz geladen werden.
Im Allgemeinen wird nach der elektrischen Leistung klassifiziert in drei Hybridisierungsstufen: Mikro-, Mild- und Vollhybrid. Zudem wird nach der Systemstruktur unterschieden in Seriell-, Parallel- und Mischhybrid.
Bei einem seriell angeordneten Hybridantrieb, der dem dieselelektrischen Antrieb zum Beispiel bei Schiffen oder Lokomotiven entspricht, hat der zweite Energiewandler keine mechanische Verbindung mehr zur Antriebsachse. Meist treibt ein Verbrennungsmotor einen elektrischen Generator an, der die Fahrenergie bereitstellt oder den Fahrakku lädt. Beim Brennstoffzellenfahrzeug übernimmt die Brennstoffzelle die Funktion des Generators. Die Leistungsfähigkeit der Motor-Generator-Kombination oder der Brennstoffzelle bestimmt dabei die Dauerleistung und -höchstgeschwindigkeit. Bei kurzzeitigem höheren Leistungsbedarf kann der Akku zusätzlichen Strom liefern. Der oder die antreibende(n) Elektromotor(en) müssen immer das gesamte geforderte Drehmoment und die gesamte geforderte Leistung erbringen.
Beispiele mit Motor + Generator: Mazda MX-30 R-EV, BMW i3 mit Range Extender, Fisker Karma, Nissan Qashqai e-Power, sowie die Studie Opel Flextreme GT/E.
Beispiele für aktuelle Brennstoffzellenfahrzeuge als serieller Hybrid: Toyota Mirai (leistungsverzweigt), Hyundai Nexo oder der Transporter Renault Kangoo Z.E. Hydrogen.
Die Darstellung mit einem magnetisch-elektrischen Getriebe-Automaten wird auch Direkthybrid genannt.
Anders als beim seriellen Hybridantrieb kann beim parallelen Hybridantrieb ein Betriebszustand eingeschaltet werden, bei dem Elektromotor und Verbrennungsmotor zugleich auf den Antriebsstrang wirken, was die Drehmomente der einzelnen Antriebe addiert. Das ermöglicht eine schwächere Auslegung aller Motoren, was Kosten, Gewicht und Bauraum spart, im Falle des Verbrennungsmotors auch Kraftstoff (downsizing). Parallelhybride lassen sich vergleichsweise kostengünstig als Mildhybrid verwirklichen. Falls auch ein rein elektrischer Fahrbetrieb möglich sein soll, muss der Elektromotor dementsprechend ausgelegt werden. Dietrich Naunin[8] (* 1937, Sohn von Helmut Naunin)[9] schreibt dazu: Charakteristisch für den parallelen Hybrid ist, dass beide Antriebsaggregate aufgrund der Leistungsaddition bei gleichen Fahrleistungen im Vergleich zum konventionellen Antrieb kleiner dimensioniert werden können.
Die Parallelhybride werden je nach Position und Eingriffspunkt der E-Maschine (EM) zum Verbrennungsmotor (VM) in die Kategorien P0-P4 eingeteilt:[10][11]
Für P0 und P1 gilt:
P4 erlaubt auch einen Allradantrieb, zumindest in dem Geschwindigkeitsbereich, in dem beide Maschinen antreiben können. Varianten können auch zusammengesetzt werden, z. B. als P0/4.
Bei Fahrzeugen wie dem Nissan March/Cube e-4WD gab es eine japanische Variante in P4-Auslegung. Der VM treibt die Vorderachse und einen Generator für den Antrieb der EM an der Hinterachse. Über die Erregung des Generators wurde die Leistungsabgabe der EM geregelt. In einer ersten Variante war so ein Allrad bis 25 km/h möglich, in der folgenden Generation bis 40 km/h. Energiequelle war immer der VM, da keine Batterien für elektrischen Antrieb und Rekuperation vorhanden waren.
In jedem Fall ist ein Getriebe am Verbrennungsmotor notwendig, was Gewichts- und Kostenvorteile teilweise wieder aufhebt.
Mischhybride kombinieren den seriellen und den parallelen Hybridantrieb (oft variabel) während der Fahrt entsprechend den Fahrzuständen. Je nach Betriebsart und Fahrzustand kann entweder der Verbrennungsmotor mit dem Generator nur den elektrischen Energiespeicher (Hybridbatterie) laden und den Elektromotor antreiben (serieller Hybridantrieb) oder mechanisch mit den Antriebswellen gekoppelt sein (paralleler Hybridantrieb). Bei diesem kombinierten Hybridantrieb wird lediglich mittels einer (automatisch betätigten) Kupplung zwischen den beiden Betriebsarten umgeschaltet. Als Beispiele für Mischhybride sind der Chevrolet Volt,[13][14][15] der Opel Ampera[13] und der seit 2014 auf dem Markt befindliche Cadillac ELR[16] sowie alle Honda-Modelle (seit 2022) zu nennen.
Demgegenüber wird beim Leistungsverzweigenden Hybridantrieb die Leistung teils mechanisch, teils über die als elektrisches Getriebe (serieller Hybridantrieb) arbeitende Motor-Generator-Kombination auf die Räder übertragen. Ein Beispiel für Leistungsverzweigung ist der Toyota Prius mit dem Hybrid Synergy Drive, in dem die Übersetzung ausschließlich über die Drehzahlen der elektrischen Maschinen gesteuert wird. Diese One-Mode-Getriebe werden bei Toyota, Lexus, Ford und anderen eingesetzt.
Das Two-Mode-Getriebe von Allison Transmission bietet verschiedene Betriebsmodi, die mit Lamellenkupplungen geschaltet werden. Das Getriebe hat zwei leistungsverzweigende Fahrbereiche und vier mechanische Übersetzungen (zusätzliche feste Gänge), in denen das System als Parallelhybrid arbeiten kann. Dadurch kann gegenüber One-Mode-Getrieben der elektrische Leistungsanteil verringert werden, wodurch die elektrischen Maschinen geringeren Anforderungen unterliegen. Der höhere mechanische Leistungsanteil ergibt zudem einen höheren Wirkungsgrad. Mit diesem aufwändigeren Konzept sind weitergehende Anpassungen an verschiedene Fahrzustände, wie etwa hohe Geschwindigkeiten, möglich. Dieses Getriebe wird in einer Kooperation zwischen General Motors, Daimler AG und BMW entwickelt.
Nach dem Leistungsanteil des elektrischen Antriebs an der Gesamtleistung (Hybridisierungsgrad) des Fahrzeugs und den möglichen Betriebszuständen werden drei Stufen unterschieden. Es gibt zudem unterschiedlichste Zwischenformen. Darüber hinaus sind auch Fahrzeuge darstellbar, die überwiegend elektrisch angetrieben werden.
Grundsätzlich kennzeichnet ein Hybridfahrzeug das Vorhandensein zweier unterschiedlicher für den Fahrzeugantrieb eingesetzter Energiewandler, was beim sogenannten Mikrohybrid nicht der Fall ist. Mikrohybridfahrzeuge haben im Wesentlichen die folgenden Merkmale:[17]
Nach Naunin hat sie eine Leistung von 2,7–4 kW/t (spezifisches Leistungsgewicht in Kilowatt Leistung des Elektroantriebs pro Tonne Fahrzeugmasse). Vorteil ist eine Kraftstoffeinsparung durch Motorabschaltung im Stillstand und den durch Laden der Batterie mit Bremsenergie später verringerten Leistungsbedarf der Lichtmaschine.
Beispiel: Die BMW-1er-Baureihe ab Modelljahr 2007 mit Schaltgetriebe.
Nachteil der Start-Stopp-Funktion ist der durch das häufige Anlaufen bedingte höhere Verschleiß der Kurbelwelle, die mit einer reibungsarmen Lagerung auf eine andauernde Rotation ausgelegt ist. Wie groß diese Auswirkungen einer Start-Stopp-Funktion auf die Lebensdauer eines Motors sind, werden die nächsten Jahre zeigen.
Das Elektroantriebsteil unterstützt den Verbrennungsmotor zur Leistungssteigerung. Die Bremsenergie kann in einer Nutzbremse teilweise wiedergewonnen werden.
Im Wesentlichen hat diese Ausführung folgende Merkmale:[18]
Als elektromotorische Leistungen werden etwa 6–14 kW/t angegeben. Durch die Kraftstoffersparnis lässt sich eine CO2-Einsparung von etwa 15 Prozent realisieren.[18] Parallel arbeitende Hybridantriebe werden oft als Mildhybrid ausgeführt.
Es besteht Kritik daran, dass Mild-Hybride als Hybridfahrzeuge eingestuft werden, da sie zu keinem Zeitpunkt nur mit Strom angetrieben werden können.[20] Die Emissionsreduzierung ist oft so gering, dass die Auswirkungen auf die Umwelt vernachlässigbar sind und als Greenwashing angesehen werden können.[20]
Beispiele sind Mercedes S-Klasse W 221 (seit 2009),[21][22] Mercedes CLS (seit 2018) oder der BMW X7 (seit 2022).
Vollhybridfahrzeuge sind mit ihrer elektromotorischen Leistung von mehr als 20 kW/t in der Lage, auch rein elektromotorisch zu fahren (einschließlich Anfahren und Beschleunigen) und stellen daher die Grundlage für einen seriellen Hybriden dar.
In groben Zügen lassen sich die Merkmale wie folgt zusammenfassen:[23]
Beispiele: Der BMW ActiveHybrid X6, der rein elektromotorisch etwa 60 km/h erreichen kann, der Toyota Prius, der etwa 70 km/h erreichen kann, siehe Toyota Hybrid Synergy Drive, oder der Ford C-MAX Hybrid, der etwa 100 km/h erreicht.[24][25][26]
Eine Erweiterung der Hybrid-Technik stellen die Plug-in-Hybride (PHEV) dar, die versuchen, den Kraftstoffverbrauch weiter zu senken, indem die Akkus nicht mehr ausschließlich durch den Verbrennungsmotor, sondern zusätzlich extern an einer Ladestation aufgeladen werden können. Das englische Wort Plug bedeutet Stecker,[27] der für den Anschluss des Fahrzeugs an das Stromnetz nötig ist. Bei diesem Konzept wird gesteigerter Wert auf eine Vergrößerung der Akkukapazität gelegt, um auch größere Strecken ohne lokale Emissionen zurücklegen zu können. Bei ausreichender Kapazität können Kurzstrecken (etwa 60 bis 80 Kilometer) so ausschließlich im Elektrobetrieb zurückgelegt werden, während der Verbrennungsmotor zusätzlich als Generator zum Nachladen der Batterien verwendet wird, um auch größere Strecken zu ermöglichen. Durch den möglichen Alleinbetrieb des Verbrennungsmotors sind auch bei leerer Batterie größere Fahrstrecken möglich.
Der Begriff des Range Extenders (Reichweitenverlängerer, auch REX) stellt die Fähigkeit in den Vordergrund, im Normalbetrieb rein oder überwiegend mit elektrischer Energiezufuhr zu fahren, aber bei Bedarf (z. B. mangels Ladesäulen) auch einen Verbrennungsmotor in Betrieb zu nehmen, der weniger leistungsstark ist, z. B. beim BMW i3 (Modell von 2013) 28 kW aufweist gegenüber 125 kW des Elektromotors und als Ausstattungsoption angeboten wird. So können eventuelle Nachteile aufgrund mangelnder elektrischer Reichweite oder fehlender elektrischer Nachlademöglichkeiten ausgeglichen werden.[28] Nachteile des REX sind das erhöhte Gewicht durch Motor, Getriebe und Tank, eine meist recht begrenzte Tankkapazität (BMW i3 REX: 9 Liter), sowie die durch die verringerte Leistung des Extenders dann bei leerer Batterie begrenzte Durchschnittsgeschwindigkeit im Nachladebetrieb (beim i3 ca. 120 km/h).
Der Hybridantrieb wird verwendet, um einen geringeren Kraftstoffverbrauch zu erzielen oder um Leistung oder Fahrkomfort zu steigern. Bei ihm ergänzen sich die Leistungskennlinien eines Elektromotors mit seinem hohen Drehmoment im unteren Drehzahlbereich und eines Verbrennungsmotors, dessen Stärken im oberen Drehzahlbereich liegen. Zusätzlich kann durch eine Nutzbremse ein Teil der Bremsenergie zurückgewonnen werden.
Ein systembedingter Nachteil des Vollhybridantriebes sind die notwendigen größeren Energiespeicherkapazitäten, die durch höhere Eigengewichte den Nutzen verringern. Das kann jedoch durch Einsparungsmöglichkeiten an anderer Stelle (zum Beispiel vereinfachtes Getriebe, Entfallen der Lichtmaschine und des Anlassers) teilweise kompensiert werden. Allerdings ist zu erwarten, dass moderne Akkumulatoren wie zum Beispiel Lithium-Polymer-Akkus oder auch Superkondensatoren beziehungsweise Lithium-Ionen-Kondensatoren diesen Nachteil in Zukunft verringern.
Ein weiterer Nachteil ist die aufwändige Produktion der Hauptkomponenten Elektromotor und Akkumulator, die die Herstellungsbilanz belasten. Bisher fehlt es an unabhängigen Untersuchungen zur Klärung der Frage, wie viel mehr an Energie für die Herstellung von Hybridfahrzeugen aufgewendet werden muss bzw. mit welcher Kraftstoffmenge man das im Vergleich zu einem Standardfahrzeug verrechnen müsste.
Derzeit hat der Mildhybrid bei geringerem Aufwand ebenfalls ein gutes Einsparpotenzial. Diese Antriebsart ist mit wenig Aufwand in vorhandene Fahrzeugkonzepte zu integrieren, während für Vollhybride mehr Entwicklungsaufwand vonnöten ist. Der einfachste Ansatz des Mildhybrid ist der Startergenerator, der den Anlasser und die Lichtmaschine in einem Elektromotor vereint und an den Antriebsstrang angebunden ist.
Bei Vollhybriden, besonders ausgeprägt bei Leistungsverzweigung und stufenlosem Getriebe, mit Einschränkung auch bei Mildhybriden, können ungünstige Motorbetriebspunkte weitgehend vermieden werden. Dieser Zusatznutzen ist beim Diesel-Hybridantrieb nur in geringerem Ausmaß möglich, da der Dieselmotor ohnehin in den meisten Motorbetriebspunkten einen sehr guten Wirkungsgrad aufweist. Weil sich aber das nötige Beschleunigungsdrehmoment des Verbrennungsmotors durch die Kombination mit dem Elektromotor verringert, können beim Dieselmotor erheblich reduzierte Emissionen von Stickoxiden (NOx) erreicht werden, wenn das Downsize-Potenzial nicht ausgenutzt wird. Der Diesel-Hybridantrieb hat also neben dem Verbrauchsnutzen auch einen Emissionsnutzen vorzuweisen.
Von Toyota wurden bereits weltweit elf Millionen Hybridautos verkauft und damit 77 Millionen Tonnen CO2 eingespart.[45] Derzeit sind 33 verschiedene Hybridmodelle von Toyota verfügbar.[45][46]
Seit 2020 sind der Fiat Panda und Fiat 500 als Mild-Hybrid mit 6-Gang-Schaltgetriebe erhältlich.[47]
Seit 2020 sind der Ford Fiesta und Ford Focus (1.0 EcoBoost-Ottomotor) und der Ford Kuga (2.0 l Turbo-Diesel) als Mildhybrid mit 6-Gang-Schaltgetriebe erhältlich.[48]
Der von 2010 bis 2016 gebaute Sportwagen Honda CR-Z war zur damaligen Zeit das einzige Hybridfahrzeug mit Schaltgetriebe.[49]
Der seit 2019 gebaute Mazda3 (BP) ist als Mild-Hybrid wahlweise mit 6-Gang-Schaltgetriebe oder mit Automatikgetriebe erhältlich.[50]
Seit 2020 ist der Suzuki Swift als Mild-Hybrid wahlweise mit 5-Gang-Schaltgetriebe oder stufenlosem CVT-Getriebe erhältlich.[51]
Hybridantriebe im Nutzfahrzeug werden bislang vor allem im Bussegment erfolgreich im Markt angeboten. So werden Hybridbusse von Volvo, von Solaris Bus & Coach (Urbino 18 Hybrid) oder auch der Aero Niederflur-Hybridbus von der Mitsubishi Fuso Truck and Bus Corporation angeboten. Ein zusätzlicher Vorteil bei Hybrid-Stadtbussen ist, dass kurze Strecken (zum Beispiel im Stadtzentrum bzw. Altstadt) durch ausschließliche Nutzung des Elektroantriebes emissionslos befahren werden können. Viele Oberleitungsbusse werden standardmäßig mit einem Verbrennungsmotor als Hilfsaggregat ausgestattet, mit dem sie notfalls bei Stromausfall weiterfahren können. Moderne Ausführungen sind nicht mehr nur schwache Hilfsmotoren, sondern durchaus leistungsfähige Antriebe, deren Leistung dem Hauptantrieb kaum nachsteht.[55]
AnsaldoBreda bietet in Italien in Serie hergestellte Hybridbusse für den Stadtverkehr an (AlterEco). Diese Busse werden seit einigen Jahren in Bologna eingesetzt. Schon Mitte der 1990er Jahre wurden in Ferrara Stadtbusse versuchsweise auf Hybridantrieb umgerüstet.
Im Lastwagensegment gibt es weit fortgeschrittene Überlegungen zum Hybrid (siehe z. B.[56] ); eine größere Marktdurchdringung ist bislang nicht erreicht worden. Erste Fahrzeuge werden allerdings angeboten; beispielsweise im Leicht-Lkw Canter Eco Hybrid. In den USA bietet der Lkw-Hersteller Peterbilt Hybrid-Lkw an.[57] Im schweizerischen Winterthur verkehrt – vor allem im Stadtzentrum – seit 2013 ein Kehrichtsammelwagen mit leisem Hybridantrieb.[58]
Nach Angaben des Kraftfahrt-Bundesamtes und der Statistik Austria umfasste der Bestand an Personenkraftwagen mit der Kraftstoffart Hybrid seit 2005:
Land | 1. Jan. 2005 | 1. Jan. 2006 | 1. Jan. 2007 | 1. Jan. 2008 | 1. Jan. 2009 | 1. Jan. 2010 | 1. Jan. 2011 | 1. Jan. 2012 | 1. Jan. 2013 | 1. Jan. 2014 | 1. Jan. 2015 | 1. Jan. 2016 | 1. Jan. 2017 | 1. Jan. 2018 | 1. Jan. 2019 | 1. Jan. 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Deutschland[59][60] | 2.150 | 5.971 | 11.275 | 17.307 | 22.330 | 28.862 | 37.256 | 47.642 | 64.995 | 85.575 | 107.754 | 130.365[61] | 165.405[62] | 236.710[63] | 341.411[64] | 539.383[65] |
Österreich[66] | 2.592 | 3.559 | 4.792 | 6.060 | 8.100 | 10.504 | 12.232 | 15.862 | 20.033 | 27.494 | 36.549 | 51.817 |
In mehreren Ländern wird der Kauf und/oder der Betrieb von Hybridfahrzeugen subventioniert. Diese Subventionen liegen je nach Land bei einer Gewährung von Kaufprämien, Boni oder auch bei steuerlichen Vorteilen bis hin zur Steuerbefreiung.[67]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.