Loading AI tools
mathematisches Modell für einen Wachstumsprozess, bei dem sich die Bestandsgröße in jeweils gleichen Zeitschritten immer um denselben Faktor verändert Aus Wikipedia, der freien Enzyklopädie
Exponentielles Wachstum (auch unbegrenztes oder freies Wachstum genannt) beschreibt ein mathematisches Modell für einen Wachstumsprozess, bei dem sich die Bestandsgröße in jeweils gleichen Zeitschritten immer um denselben Faktor vervielfacht. Der Wert der Bestandsgröße kann im zeitlichen Verlauf entweder steigen (exponentielle Zunahme) oder abnehmen (exponentieller Zerfall oder exponentielle Abnahme). Ein solcher Verlauf kann bei einer exponentiellen Zunahme durch die Verdopplungszeit und bei einer exponentiellen Abnahme durch die Halbwertszeit eindeutig angegeben werden. Anders als lineares oder polynomiales Wachstum verursacht exponentielles Wachstum auch bei anfangs nur kleinen Veränderungen im weiteren Verlauf deutlich größere, sodass ein exponentielles Wachstum ab einem bestimmten Zeitpunkt jedes lineare oder polynomiale Wachstum um Größenordnungen übersteigt. Aus diesem Grund kann die Auswirkung von exponentiellem Wachstum leicht unterschätzt werden.
Bei einer Wachstumsfunktion ist die Bestandsgröße abhängig von der Zeit . Sie ist von der Form
oder gleichwertig mit . Hierbei bezeichnet den Wachstumsfaktor und die Wachstumskonstante.
Wegen ist der Anfangsbestand zur Zeit .
Ist , also , so handelt es sich um eine exponentielle Zunahme. Die Verdopplungszeit (auch Doppelwertszeit und in der Biologie Generationszeit genannt) ist dann .
Bei und daher spricht man von einer exponentiellen Abnahme. Die Halbwertszeit ist dann .
Allgemein ist bei einem Vervielfältigungsfaktor die Vervielfältigungszeit . Umgekehrt berechnet sich der Vervielfältigungsfaktor zu .
In diesem Beispiel beträgt der jährliche Zinsfaktor und die Vervielfältigungszeit . Bei einem Anfangskapital von gilt:
Durch die Substitution lässt sich die Größengleichung in eine Zahlenwertgleichung umwandeln:
Dabei bedeutet das nach Jahren angesammelte Kapital in €. Nach 9 Jahren ist das Kapital wegen
auf 199,90 € angewachsen, es hat sich also fast verdoppelt.
Bei einer vierteljährlichen Gutschrift der Zinsen wäre der jährliche Zinsfaktor bankmäßig auf das Quartal umzurechnen () und für die Zeit die Anzahl der Quartale einzusetzen (). Dies ergäbe in diesem Beispiel:
In einem Land verdoppele sich die Zahl der Infizierten alle 3 Tage. Hat man z. B. zum Zeitpunkt 0 eine Anzahl von 1000 Infizierten, so sind es nach 3 Tagen 2000, nach 6 Tagen 4000 Infizierte usw. Die Anzahl der Infizierten wachse also (zunächst) exponentiell und kann dann durch folgende Funktion beschrieben werden:
Nach 27 Tagen sind es dann schon und nach 2 Monaten Milliarden Infizierte.
Bei ungebremstem Wachstum, aber begrenzter Population von zum Beispiel 80 Millionen, errechnen sich die Werte nach dem logistischen Wachstum zu (nur eine kleine Abweichung vom exponentiellen Wachstum) und Millionen (nahe der Gesamtpopulation).[1]
Cäsium-137, ein Produkt der Kernspaltung, hat eine Halbwertszeit von 30 Jahren. Seine Zerfallsfunktion lautet daher
Nach 90 Jahren gibt es wegen
immer noch der ursprünglich vorhandenen Cäsiummenge .
In den Beispielen 1 und 2 handelt es sich um eine exponentielle Zunahme und im Beispiel 3 um eine exponentielle Abnahme.
Nebenstehendes Bild zeigt beispielhaft, dass immer auf lange Sicht der Bestand (wie auch die Wachstumsgeschwindigkeit) eines positiven exponentiellen Prozesses größer ist als beim linearen, beim kubischen Wachstum oder allgemein bei allen Wachstumsprozessen, die sich durch ganzrationale Funktionen beschreiben lassen.
Beim Modell des exponentiellen Wachstums ist die Änderung (diskreter Fall) bzw. (kontinuierlicher Fall) der Bestandsgröße proportional zum Bestand. Im diskreten Fall ergibt sich der neue Bestandswert bei positivem Wachstum, indem der alte Wert mit einer Konstanten größer als 1 multipliziert wird, und bei negativem Wachstum mit einer positiven Konstanten kleiner als 1 multipliziert wird.
Bei der exponentiellen Abnahme bildet die x-Achse die Asymptote des Graphen der Wachstumsfunktion. Die Bestandsgröße nähert sich der Null an, verschwindet aber nicht. In Anwendungsbezügen wie z. B. der Biologie sind die Bestandsgrößen häufig ganzzahlig, sodass sehr kleine Werte schließlich keine Bedeutung mehr haben und der Bestand praktisch gesehen ausstirbt.
Differentialgleichungen (DGL) dienen der Beschreibung kontinuierlicher (stetiger) Wachstumsmodelle.
Die DGL für den exponentiellen Prozess lautet:
Dies ist eine lineare homogene Differentialgleichung mit konstanten Koeffizienten und kann zum Beispiel mittels der Methode „Variablentrennung“ gelöst werden.
Die Wachstumsgeschwindigkeit lässt sich aus der DGL herleiten: .
Zur Darstellung des diskreten Wachstumsmodells in rekursiver Form dienen aus Differenzen abgeleitete Folgen. Dabei bezeichnet die Zeitdifferenz in einer äquidistanten Folge von Zeitpunkten für ; und bedeutet die entsprechenden Bestandsgrößen.
In rekursiver Form wird zeitdiskretes exponentielles Wachstum (Zu- und Abnahme) durch
beschrieben. Dabei ist der Wachstumsfaktor mit jenem im zeitkontinuierlichen Fall identisch.
Die Bestandsgröße folgt aus den Formeln für kontinuierliches Wachstum mit den Substitutionen , und zu
Bestimmt werden soll die Zeitspanne , in der sich ein exponentiell entwickelnder Bestand um den Faktor ändert. Die Wachstumsgleichung ist mit dem Vervielfältigungsfaktor und der Vervielfältigungszeit gegeben. Aus folgt
Beispiel: Für nahe eins gilt näherungsweise . Eine Verdoppelung () benötigt demnach die Zeit .
Die Funktion von der additiven Gruppe der Intervalle in die multiplikative Gruppe der Frequenzverhältnisse
ist eine Exponentialfunktion. Dabei gilt
Das Frequenzverhältnis von Intervallen wächst also exponentiell.
Hinweis: Oktave ist eine Einheit für die Intervallgröße mit dem Frequenzverhältnis 2:1. Cent ist eine Untereinheit der Oktave, wobei Oktave = 1200 Cent.
Bei den Intervallen handelt es sich um eine additiv geordnete Gruppe. Das Frequenzverhältnis einer Summe ist das Produkt der Frequenzverhältnisse.
Beispiel
Der Modellansatz zu exponentiellem Wachstum stößt in der Realität auf seine Grenzen –, insbesondere im wirtschaftlichen Bereich.
„Exponentielles Wachstum ist nicht realistisch“ als langfristiger Trend, so der Wirtschaftswissenschaftler Norbert Reuter. Er führt an, dass die Wachstumsraten in höher entwickelten Gesellschaften aufgrund von konjunkturellen Einflüssen zurückgehen.[12] Indikator dafür ist das Bruttoinlandsprodukt (BIP). Mit Blick auf statistische Daten lässt sich ableiten, dass ein exponentielles Wirtschaftswachstum eher typisch für Anfangsjahre einer industriellen Volkswirtschaft ist, aber ab einem bestimmten Niveau, wenn wesentliche Entwicklungsprozesse abgeschlossen sind, in ein lineares Wachstum übergeht.[13] Wird also ein weiteres exponentielles Wachstum extrapoliert, tritt eine Diskrepanz zwischen der Wachstumserwartung und dem tatsächlichen Verlauf auf.
Dies betrifft unter anderem die Staatsverschuldung. Durch die rechentechnisch falsche Erwartung, dass die Staatsverschuldung durch ein Wirtschaftswachstum begrenzt werden könnte, sinkt jedoch nur die Schwelle für neue Schulden. Bleibt jedoch das erwartete Wachstum aus, entsteht ein Defizit, das die künftige Handlungsfähigkeit eines Staates einschränkt. Aufgrund der Zinsen und Zinseszinsen besteht die Gefahr, dass die Staatsverschuldung exponentiell wächst.[14]
Ein weiterer Aspekt ist, dass der Bedarf nicht ins Unermessliche steigt, sondern einen Sättigungseffekt erfährt, der auch nicht durch entsprechende Wirtschaftspolitik kompensiert werden kann.[12] In die gleiche Richtung gehen Überlegungen in Bezug auf biologische Zusammenhänge beispielsweise durch Konkurrenz um Nahrung oder Platz. Bezogen auf die Weltbevölkerung thematisiert dies die Debatte um den ökologischen Fußabdruck – sprich um die Tragfähigkeit der Erde mit dem relativ kleinen Verbrauch an erneuerbare Ressourcen bezogen auf den Gesamtverbrauch an Ressourcen.[15] Hier vernachlässigt das exponentielle Wachstumsmodell auch demographische Entwicklungen wie das Verhältnis zwischen Geburten- und Sterberate sowie das Verhältnis zwischen weiblicher und männlicher Bevölkerung.[16]
Wachstumsmodelle, die den Sättigungseffekt berücksichtigen, sind das beschränkte Wachstum und das logistische Wachstum, während das Modell des vergifteten Wachstums auch wachstumshemmende Faktoren in den Prozess mit einberechnet.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.