Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Unter einer Dreiecksmatrix versteht man in der Mathematik eine quadratische Matrix, die sich dadurch auszeichnet, dass alle Einträge unterhalb (obere Dreiecksmatrix) bzw. oberhalb (untere Dreiecksmatrix) der Hauptdiagonale null sind. Sind zusätzlich alle Einträge auf der Hauptdiagonale null, so spricht man von einer echten oder strikten Dreiecksmatrix.
Dreiecksmatrizen spielen unter anderem beim Lösen von linearen Gleichungssystemen mittels der LR-Zerlegung eine wichtige Rolle, welche darauf basiert, eine Matrix in das Produkt einer oberen und einer unteren Dreiecksmatrix zu zerlegen.
Eine Matrix wird obere Dreiecksmatrix genannt, falls alle Einträge unterhalb der Hauptdiagonale gleich null sind. Für die Einträge auf der Hauptdiagonale selbst gibt es keine Beschränkungen.
Für eine obere Dreiecksmatrix gilt somit:
Analog heißt eine Matrix untere Dreiecksmatrix, falls alle Einträge oberhalb der Hauptdiagonale gleich null sind, also wenn gilt
Eine Dreiecksmatrix heißt normierte Dreiecksmatrix, falls alle Diagonaleinträge gleich 1 sind:
Ist ein Vektorraum über dem Körper und hat man eine quadratische Matrix , die die Darstellung einer linearen Abbildung (Vektorraum-Endomorphismus) ist, so heißt diese trigonalisierbar, falls sie bei Betrachtung in einer anderen Basis eine obere Dreiecksgestalt aufweist. Gesucht ist also eine Dreiecksmatrix , die ähnlich zu ist.
Dies ist genau dann der Fall, falls das charakteristische Polynom von über dem Körper in Linearfaktoren zerfällt.
Ist , so ist jede Matrix trigonalisierbar, da nach dem Fundamentalsatz der Algebra der Körper algebraisch abgeschlossen ist.
Es gibt zwei unterschiedliche Definitionen für den Begriff strikte obere Dreiecksmatrix, je nachdem, ob man allgemeine oder nur invertierbare Matrizen betrachtet. Erstere sind nilpotent, letztere unipotent. Die folgenden Definitionen erfolgen analog für strikte untere Dreiecksmatrizen.
Bei einer strikten oberen Dreiecksmatrix in diesem Sinne sind alle Einträge sowohl unterhalb als auch auf der Hauptdiagonale der Matrix . Es gilt somit:
Bei einer -Matrix gilt also .
Bei einer strikten oberen Dreiecksmatrix im Sinne invertierbarer Matrizen sind alle Einträge unterhalb der Hauptdiagonale der Matrix , während die Diagonaleinträge alle gleich sind (vgl. normierte Dreiecksmatrix oben). Es gilt somit:
Eine solche -Matrix sieht also wie folgt aus: .
Eine derartige Matrix ist der Spezialfall einer unipotenten Matrix, d. h., die Matrix ist nilpotent, es gibt also eine Zahl , so dass gilt
Es lässt sich beweisen:
Wegen ihrer speziellen Eigenschaften werden Dreiecksmatrizen an verschiedenen Stellen, insbesondere auch bei Verfahren der numerischen Mathematik eingesetzt. Bei der folgenden Aufstellung wird der Körper zugrunde gelegt.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.